LC Vision Community Event:

Beyond Collider Physics Opportunities

08.01.2024, CERN Stefania Gori, <u>Mihoko Nojiri</u>, Yasuhito Sakaki, Ivo Schulthess

Shop List of Beyond the Collider (need some figure for overviewing)

High intensity and High Energy electron and positron beam

- Main beam dump
 - primary electron
 - secondaries
 - muon
 - neutrino
 - neutron
 - heavy hadrons (b, c, s) comparable
 - to
- Othe

Long lived particle–Window to the dark sector

- Almost all accelerated particles can be utilized for the beam dump experiment.
 - Suitable for searching feebly interacting particles.
- A very high-power targets (main beam dumps) can be used without additional cost.

New particles from electromagnetic showers

Luminosity between shower particles and proton/neutron 10^{7} 10^{6} e 10^{5} $rac{\mathrm{d}\mathcal{L}}{\mathrm{d}\ln x}$ 10^{4} e $[ab^{-1}/year]_{10^3}$ 10^{2} 10^{1} 10^{0} 125 GeV, 2.6 MW 10^{-1} 10^{-2} 10^{-1} 10^{0} $x \ (= E/E_{\text{beam}})$

Highly sensitive to particles that couple to shower particles.

Heavy mesons and Tau leptons

Heavy Neutral Leptons

m_v [GeV]

Strong-Field QED: Beam-Laser Interaction

courtesy: B. King (SFQED 2024)

- Breit-Wheeler pair harmonics
 - $\lambda_L = 800 \text{ nm}$

=

-

- E_e up to 1 TeV \rightarrow n up to 11.6
- frequency doubling as alternative

- Transition to fully non-perturbative regime
 - transition at $\chi = \eta \xi = 1600$
 - with $\eta = 11.6$
 - **→** ξ = 138
 - reachable with current laser systems

Strong-Field QED: Beam-Beam Interaction

courtesy: M. Filipovic et al. (2021)

- particles in each beam radiate due to interaction with the electromagnetic fields generated by the opposite beam
- characterized by:
 - quantum non-linearity parameter $\Upsilon_{\rm avg} = \frac{5r_e^2\gamma N_e}{6\alpha\sigma_z(\sigma_x+\sigma_y)}$
 - number of emitted photons

$$n_{\gamma} \approx 2.54 \frac{\alpha \sigma_z}{\bar{\lambda}_e \gamma} \frac{\Upsilon}{\sqrt{1 + \Upsilon^{2/3}}}$$

- relative energy loss

$$\delta_{BS} \approx 1.24 \frac{\alpha \sigma_z}{\bar{\lambda}_e \gamma} \frac{\Upsilon^2}{(1 + (1.5\Upsilon)^{2/3})^2}$$

E _{cm} [GeV]	δ _{BS} [%]	N _{e+e-}
250	2.6	
500	4.5	
1'000	10.5	O(10 ⁵)
5'000	O(40)	O(10 ⁹)

Test Facilities: Cosmic Neutrons & Muons

- cosmic neutrons/muons create soft errors in semiconductors
- if facility produces cosmic spectra: no need to know soft error cross-section
- good news: ILC-like water dump produces cosmic spectra

courtesy: Y. Sakaki et al. (2023)

Backup

Far detector experiment opportunity (Yasu)

SHIFTed Fixed-Target Experiment

- possible 10² 10³ improvement
 compared to collider LLP searches
- currently in planning phase for HL-LHC
- minimal costs and no additional facility/detector required

courtesy: J. Niedziela (2024)

LC Vision Community Event:

Facilities for Beyond Collider Experiments and Technology R&D

09.01.2024, CERN Stefania Gori, Mihoko Nojiri, Yasuhito Sakaki, <u>Ivo Schulthess</u>

- Hall size: 5m x 5m x 100-200m
- The maximum hall width depends on the beam crossing angle and the distance between the IP and the main beam dump.

ILC	parameters	at initial	stage

Quantity	Symbol	Unit	Initial
Centre of mass energy	\sqrt{s}	${\rm GeV}$	250
Repetition frequency	$f_{ m rep}$	Hz	5
Bunches per pulse	$n_{ m bunch}$	1	1312
Bunch population	$N_{ m e}$	10^{10}	2
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554
Beam pulse duration	$t_{ m pulse}$	$\mu { m s}$	727
courtesy: The International Linear Collic	ler: Report to Snow	mass 2021	

- Beamlines for dedicated experiments:
 - Fixed target experiment Ο
 - High energy Photon source 0
 - One of the candidate locations for 0 conducting a SF-QED study.
- Two possible locations:
 - Tune-up dump area Ο
 - Dedicated area 0
- Hall size: 10m x 5-10m x 50m
- How much can the bunch charge be reduced? •
 - $3.2 \text{ nC} \rightarrow ?$ \cap

Strong-Field QED: IP Facility

Beam-Beam Interaction:

- BDS to tune interaction parameters
 - beam shape
 - beam displacement
- diagnostics in forward region
 - Beamstrahlung
 - e⁺e⁻ pairs (dipole spectrometer)

Beam-Laser Interaction:

- usage of beam
 - use of second IP possible?
 - use beam at tune-up dump?
 - extract beam in BDS section
- IP chamber (4 m²)
- diagnostics in forward region
 - (quadrupole imaging system)
 - dipole spectrometer
 - electron/positron detection systems
 - photon detection systems

Strong-Field QED: Laser Hall

200 TW System

- e.g. Thales QUARK 200
- container-sized (4 x 4 m² optical table)

10 PW System

- e.g. ELI-NP, Apollon
- hall-sized (roughly $20 \times 50 \text{ m}^2$)

Key Requirements

- building above ground
- feed-through to IP
- vibration stability
- MW power consumption
- thermal management
- cleanroom environment

Test Facilities: Cosmic Neutrons & Muons

- cavern of $3 \times 3 \times 6 \text{ m}^3$
- on the side of the main dump (neutron)
- downstream the main dump (muon)
- A mechanism that allows large integrated circuits and similar components to be automatically inserted and removed even during beam operation is desirable.

Plasma-Wakefield Accelerator R&D (Ivo)

Facility Questions

- is it possible to have the 2nd IP further away in a separate interlock to have independent access?
- what are the beam properties at the tune-up dump and what needs to be added that it can be used for experiments?
- is a slow extraction for LDMX-like searches at a LC possible?