Update on new Higgs self-coupling study

For the ECFA Higgs Factory Report

Bryan Bliewert (DESY/UHH), Jenny List (DESY), Dimitris Ntounis (SLAC), Taikan Suehara (U Tokyo), Junping Tian (U Tokyo), Julie Torndal (DESY/UHH), Caterina Vernieri (SLAC)

ILD Software & Analysis Meeting, Jan 28 2025

Motivation

Higgs self-coupling as key part of physics case for e+e- collisions at >= 500 GeV

Higgs@FC WG September 2019

single-Higgs HL-LHC 50% (47%) HE-LHC 50% (40%) FCC-ee/eh/hh 25% (18%) LE-FCC n.a.

FCC-eh₃₅₀₀ n.a. 24% (14%) FCC-ee₃₆₅ 33% (19%) FCC-ee₂₄₀ 49% <u>(19%)</u> 36% (25%) ILC₅₀₀ 38% (27%) ILC_{250} 49% (29%) CEPC <u>49% (17%)</u> 49% (35%) CLIC₁₅₀₀ 49% (41%) CLIC₃₈₀ 50% (46%)

Key question of the community in the upcoming EPPSU: Will a Linear **Collider do any better than the HL-**LHC?

HL-LHC update will only be known from their strategy submission, but we should not be surprised if from the previous 50% -> 25%

— for the SM case!

Apples - Oranges - Pears A slide from Marcel's talk at the LC Vision Community Event **Top Yukawa coupling comparison**

DESY. | Update on ZHH Analysis| J. List, ILD Software & Analysis Meeting, Jan 21 2025

M. L. Mangano et al., Measuring the Top Yukawa Coupling at 100 TeV, J. Phys. G 43 (2016) 035001, DOI: 10.1088/0954-3899/43/3/035001, **arXiv**: 1507.08169 [hep-ph].

Z. Liu et al., Top Yukawa coupling determination at high energy muon collider, Phys. Rev. D 109 (2024) 035021, DOI: 10.1103/PhysRevD.109.035021, arXiv: 2308.06323 [hep-ph].

ILC550	ILC1000	CLIC	FCChh	µ-coll
2.6%	1.5%	3.0%	-	-
2.3%	1.4%	2.5%	1%	1.5%

Apples - Oranges - Pears A slide from Marcel's talk at the LC Vision Community Event **Top Yukawa coupling comparison**

Valu	es in % units	LHC	HL-LHC	ILC500	ILC550	ILC1000	CLIC	FCChh	μ-coll
δν	Global fit	12%	5.1%	3.1%	2.6%	1.5%	3.0%	-	-
$\mathbf{O}\mathbf{y}_t$	Indiv. fit	10%	3.7%	2.8%	2.3%	1.4%	2.5%	1%	1.5%

DESY. | Update on ZHH Analysis| J. List, ILD Software & Analysis Meeting, Jan 21 2025

M. L. Mangano et al., Measuring the Top Yukawa Coupling at 100 TeV, J. Phys. G 43 (2016) 035001, DOI: 10.1088/0954-3899/43/3/035001, arXiv: 1507.08169 [hep-ph].

Z. Liu et al., Top Yukawa coupling determination at high energy muon collider, Phys. Rev. D 109 (2024) 035021, DOI: 10.1103/PhysRevD.109.035021, arXiv: 2308.06323 [hep-ph].

LC prospects: "oranges"

Theory studies: "pears"

restricting LC prospects exclusively to results demonstrated in full simulation with current tools / algorithms will be mis-understood

The previous ZHH Analysis ILC500 based on ILD DBD2013

> extensive projections at ILC500 (DESY-Thesis-16-027)

- based on ILD detector concept (<u>DBD2013</u>, <u>IDR2020</u>) and *fully simulated* event samples
- 17 background and 3 signal channels considered
- multivariate (MVA) tools for multiple steps e.g. lepton and flavor tagging, background rejection etc.
- event counting weighted by m_{HH}^2 for further sensitivity enhancement

> precision reach after running $4ab^{-1}$ at 500 GeV (HH → $b\bar{b}b\bar{b} + HH → b\bar{b}W^{\pm}W^{\mp}$)

 $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8\%$

 $\Delta\lambda_{\rm SM}/\lambda_{\rm SM}$ = 26.6% (10% with additional upgrade to 1 TeV)

Lepton, neutrino and hadron channel of the signal process ZHH. From [Du16]

The previous ZHH Analysis ILC500 based on ILD DBD2013

> extensive projections at ILC500 (DESY-Thesis-16-027)

- based on ILD detector concept (<u>DBD2013</u>, <u>IDR2020</u>) and *fully simulated* event samples
- 17 background and 3 signal channels considered
- multivariate (MVA) tools for multiple steps e.g. lepton and flavor tagging, background rejection etc.
- event counting weighted by m_{HH}^2 for further sensitivity enhancement

 $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8\%$

8 σ observation of ee -> ZHH

 $\Delta\lambda_{\rm SM}/\lambda_{\rm SM}$ = 26.6% (10% with additional upgrade to 1 TeV)

DESY. Determining the Higgs Potenitial | FTX | 17 Sep 2024 | Jenny List

Lepton, neutrino and hadron channel of the signal process ZHH. From [Du16]

> precision reach after running $4ab^{-1}$ at 500 GeV (HH → $b\bar{b}b\bar{b} + HH → b\bar{b}W^{\pm}W^{\mp}$)

The previous ZHH Analysis ILC500 based on ILD DBD2013

> extensive projections at ILC500 (DESY-Thesis-16-027)

- based on ILD detector concept (<u>DBD2013</u>, <u>IDR2020</u>) and *fully simulated* event samples
- 17 background and 3 signal channels considered
- multivariate (MVA) tools for multiple steps e.g. lepton and flavor tagging, background rejection etc.
- event counting weighted by m_{HH}^2 for further sensitivity enhancement

 $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8\%$

8 σ observation of ee -> ZHH

 $\Delta\lambda_{\rm SM}/\lambda_{\rm SM}$ = 26.6% (10% with additional upgrade to 1 TeV)

DESY. Determining the Higgs Potenitial | FTX | 17 Sep 2024 | Jenny List

Lepton, neutrino and hadron channel of the signal process ZHH. From [Du16]

Bottlenecks of the ZHH analysis As identified during 2014 analysis and (relative) improvement impact

- > jet pairing and jet misclustering: "perfect" jet clustering $\rightarrow 40\%$ improvement improve di-jet mass resolution
- > removal of $\gamma\gamma$ overlay: 15% improvement expected also: improve ISR reconstruction
- > flavor tagging: 11% improvement expected from 5% eff. increase with newer LCFIPlus important as $H \rightarrow b\overline{b}$ is the dominant Higgs decay channel
- \succ adding $Z \rightarrow \tau \tau$ channel: 8% improvement expected include a yet unaccounted decay channel
- > more modern ML architectures for signal/background selection improvement expected when transitioning from BDTs to (e.g.) transformer-based models etc.
- Separation of ZHH diagrams with/without the self-coupling would directly improve the sensitivity on λ (lower sensitivity factor)

Expected relative improvements from DESY-Thesis-16-027

Bottlenecks of the ZHH analysis As identified during 2014 analysis and (relative) improvement impact

- > jet pairing and jet misclustering: "perfect" jet clustering $\rightarrow 40\%$ improvement improve di-jet mass resolution
- \succ removal of $\gamma\gamma$ overlay: 15% improvement expected also: improve ISR reconstruction
- > flavor tagging: 11% improvement expected from 5% eff. increase with newer LCFIPlus important as $H \rightarrow b\overline{b}$ is the dominant Higgs decay channel

To which extend can we actually realize these \succ adding $Z \rightarrow \tau$ include a yet una improvements?

- > more modern ML architectures for signal/background selection improvement expected when transitioning from BDTs to (e.g.) transformer-based models etc.
- Separation of ZHH diagrams with/without the self-coupling would directly improve the sensitivity on λ (lower sensitivity factor)

Expected relative improvements from DESY-Thesis-16-027

And in addition... ... plus some missing things

MC samples ullet

- "ZHH" and "ZZH" generated, simulated, reconstructed in 2022/23 \bullet
- SM backgrounds at 500 GeV from IDR production —- modern PID not available \bullet
- would like to move full analysis to 550 GeV \bullet
- new production at 550 GeV underway, 2f / 4f generated, 6f / 8f wip
- SGV / full sim comparison very successful => can use SGV for evaluating bulk background rejection

Flavour tagging \bullet

- major progress with actually applying ML in analysis
- ML tools require huge training samples => SGV, wip

kinematic reconstruction and general event selection \bullet

- major progress in porting semi-leptonic decay correction / kinematic fitting / matrixelements ...
- even more expected from full ML selection c.f. talk by Mangi last meeting

we're not quite there yet to run the whole analysis chain — but not far away either!

7

And in addition... ... plus some missing things

MC samples ullet

- "ZHH" and "ZZH" generated, simulated, reconstructed in 2022/23 \bullet
- SM backgrounds at 500 GeV from IDR production —- modern PID not available \bullet
- would like to move full analysis to 550 GeV \bullet
- new production at 550 GeV underway, 2f / 4f generated, 6f / 8f wip
- SGV / full sim comparison very successful => can use SGV for evaluating bulk background rejection

Flavour tagging \bullet

- major progress with actually applying ML in analysis
- ML tools require huge training samples => SGV, wip

kinematic reconstruction and general event selection \bullet

- major progress in porting semi-leptonic decay correction / kinematic fitting / matrixelements ...
- even more expected from full ML selection c.f. talk by Mangi last meeting

we're not quite there yet to run the whole analysis chain — but not far away either!

will motivate in the following:

- 10% rel. efficiency improvement per jet @ same bkg level
- enters to 3rd power (i.e. 3 out of 4 jets tagged)

7

And in addition... ... plus some missing things

MC samples ullet

- "ZHH" and "ZZH" generated, simulated, reconstructed in 2022/23 \bullet
- SM backgrounds at 500 GeV from IDR production —- modern PID not available \bullet
- would like to move full analysis to 550 GeV \bullet
- new production at 550 GeV underway, 2f / 4f generated, 6f / 8f wip
- SGV / full sim comparison very successful => can use SGV for evaluating bulk background rejection

Flavour tagging \bullet

- major progress with actually applying ML in analysis
- ML tools require huge training samples => SGV, wip

kinematic reconstruction and general event selection \bullet

- major progress in porting semi-leptonic decay correction / kinematic fitting / matrixelements ...
- even more expected from full ML selection c.f. talk by Mangi last meeting

we're not quite there yet to run the whole analysis chain — but not far away either!

will motivate in the following:

- 10% rel. efficiency improvement per jet @ same bkg level
- enters to 3rd power (i.e. 3 out of 4 jets tagged)

10% rel. efficiency improvement @ same bkg

7

Flavour-Tagging with ML ParticleNet and ParticleTransformer

- significant improvements wrt LCFIPlus achieved already 2023/24
- receipe to perform inference from Marlin MarlinMLFlavorTagging
- new:
 - ParticleNet and ParticleTransformer ready for application in full reconstruction & analysis chain!
 - new trainings on 500 GeV 6q samples
 - new comparison with LCFIPlus

Flavour-Tagging with ML ParticleNet and ParticleTransformer

- significant improvements wrt LCFIPlus achieved already 2023/24
- receipe to perform inference from Marlin MarlinMLFlavorTagging
- new:
 - ParticleNet and ParticleTransformer ready for application in full reconstruction & analysis chain!

	 new tra b-tag 8 new co 	ow eff.	500 GeV c-tag 8 with L C.F	les	
ethod	c-bkg acceptance	uds-bkg acceptance	b-bkg acceptance	uds-bkg acceptance	
FIPlus	10%	1%	10%	2%	
ParT	1.29%	0.25%	1.02%	0.43%	

Current Status for ECFA: b vs uds ~10% (rel.) higher efficiency at same background level - per jet

- Technicalities regarding the 500 GeV flavortag samples are resolved

Current Status for ECFA: b vs c ~10% (rel.) higher efficiency at same background level - per jet

- Technicalities regarding the 500 GeV flavortag samples are resolved -

Current Status for ECFA: b vs c ~10% (rel.) higher efficiency at same background level - per jet

- Technicalities regarding the 500 GeV flavortag samples are resolved

Neutrino Correction with Vertexing, PFlow and Kinematic Fi Improved m(bb) invariant mass reconstruction

- For semileptonic decay (SLD) processes
 - already in ZH $\rightarrow b\overline{b}/c\overline{c}$, 66% of events include at least one SLD
- > procedure:
 - identify/tag heavy quark jet
 - identify lepton in jet
 - calculate neutrino four momentum from kinematics with kinematic fitting, the best solution is selected
- > status: in production (in MarlinReco)

Recovering the neutrino kinematics. Y. Radkhorrami [2022]

11

Improved di-jet mass reconstruction. Y. Radkhorrami [2022]

11

In theory the optimal observable...

generator level check

> excellent separation

DESY. Determining the Higgs Potenitial | FTX | 17 Sep 2024 | Jenny List

more details cf talk by Bryan Oct 2 nice additional discrimination potential even without detector transfer function

DESY. Determining the Higgs Potenitial | FTX | 17 Sep 2024 | Jenny List

Extrapolation scheme Incorporating the shown flavour tag and kinematic reconstruction/selection improvements

starting point: Table 9.1 <u>Thesis Claude Düriq</u> with S, B and significances for both polarisations \bullet

	ee	ebbbb	mum	ubbbb	nunu	ıbbbb	bbb	bbb	dbb	obbb	comb sig	comb. X-sec. uncert
Pol	-80,+30	+80,-30	-80,+30	+80,-30	-80,+30	+80,-30	-80,+30	+80,-30	-80,+30	+80,-30		
Significance (meas.) Claude	1.07	0.92	1.26	1.1	1.5	1.54	1.57	1.58	1.55	1.64	4.41	0.227
x^2	1.14	0.85	1.59	1.21	2.25	2.37	2.46	2.50	2.40	2.69	19.46	
s Claude (Tab 9.1)	3.9	2.9	5.1	3.8	5.6	3.6	8.5	5.9	12.6	8.3		
b Claude (Tab 9.1)	7	4.2	8.9	5.3	6.9	1.1	21.9	7	55	16		
s/sqrt(s+b)	1.18	1.09	1.36	1.26	1.58	1.66	1.54	1.64	1.53	1.68	4.39	0.228
x^2	1.40	1.18	1.86	1.59	2.51	2.76	2.38	2.70	2.35	2.83	19.29	

- lacksquare
 - flavour tag improvement: 22.8% -> 17.2% ullet
 - kin. sel. improvement: 17.2% -> 16% \bullet
- include additional channels (also done for the good old 26.6% ~=27%): 16% -> 11.2% ullet
 - Z-> tautau, HH->bbWW, HH->bb tautau and "other" ullet
- convert to dlamba/lambda with sensitivity factor incl. mHH weighting (1.62): \bullet $d\lambda/\lambda$ (SM) = 18 %

ILD detector concept, propagated to the ZHH analysis based on [cite PhD Claude Dürig]"

 \bullet estimate that λ SM could be determined with a precision of **15** %"

apply changes to signal s per channel and polarisation, re-calculate combined cross-section significance

"flavour tag and kinematic reconstruction improvements demonstrated in detailed simulations of the

mentioned as outlook: "One of the main limiting factors not yet addressed by novel algorithms is the jet clustering. Assuming that future developments, e.g. based on ML, will improve the di-jet mass resolution, we

ECM Dependency extrapolated as before....

- use the "usual" cross-section-level extrapolation to project the dependency on ullet
 - ECM: 550 GeV incl vvHH -> 15% ullet

14

ECM Dependency extrapolated as before....

- use the "usual" cross-section-level extrapolation to project the dependency on ullet
 - ECM: 550 GeV incl vvHH -> 15% ullet

14

Beyond the SM as extrapolation as function of lambda

Beyond the SM as extrapolation as function of lambda

Beyond the SM as extrapolation as function of lambda

Comparison with HL-LHC hand-made version....(comparison with ATLAS (next slide) shows ~consistency)

Comparison with HL-LHC ATLAS BSM value projection - bbtautau only

Comparison with HL-LHC ATLAS BSM value projection - bbtautau only

Conclusions / Next steps

Overview

- Results submitted for ECFA report: ullet
 - 500 GeV, ZHH: 18% \bullet
 - 550 GeV, ZHH & vvHH: 15% ullet
- \bullet analysis etc, we think this is still not the end!
- Analysis will continue at full steam ullet
- Next items for full analyis: \bullet
 - MC 550 GeV... \bullet
 - Optimize flavour-tag \bullet
 - re-do full selection
 - separate neutrino channel into WW fusion / ZHH \bullet
 - overlay removal... \bullet
 - . . .

given the even better flavour tag results in the literature, expectations on further usage of ML in reconstruction &

