Experiments and simulations with clearing electrodes

Art Molvik

Lawrence Livermore National Laboratory

Heavy-Ion Fusion Science Virtual National Laboratory

at

ILC Damping Rings Workshop ILCDR06 Cornell University 26-28 September 2006

UCRL-PRES-224747

Outline

- 1. E-cloud tools available for ILC R&D
- 2. Clearing electrode experiments
- 3. Clearing electrode simulations
- 4. Summary

Outline

- 1. E-cloud tools available for ILC R&D
- 2. Clearing electrode experiments
- 3. Clearing electrode simulations
- 4. Summary

HIFS-VNL has unique tools to study ECE

Who we are – The Heavy Ion (Inertial) Fusion Science Virtual National Laboratory (HIFS-VNL) has participants from LLNL, LBNL, and PPPL.

- WARP/POSINST code goes beyond previous state-of-the-art (Celata)
 - Parallel 3-D PIC-adaptive-mesh-refinement code with accelerator lattice follows beam <u>self-consistently</u> with gas/electrons generation and evolution
- HCX experiment addresses ECE fundamentals relevant to HEP (as well as WDM and HIF)
 - trapping potential ~2kV (~20% of ILC bunch potential) with highly instrumented section dedicated to e-cloud studies
- Combination of models and experiment unique in the world
 - unmatched benchmarking capability provides credibility
 - -'Benchmarking' can include:
- a. Code debug
- b. validation against analytic theory
- c. Comparison against codes
- d. Verification against experiments
- enabled us to attract work on LHC, FNAL-Booster, and ILC (2007)

The Heavy Ion Fusion Science Virtual National Laboratory

HCX is available for gas/electron effects studies (at LBNL)

Diagnostics in two magnetic quadrupole bores, & what they measure.

8 "paired" Long flush collectors (FLL): measures capacitive signal + collected or emitted electrons from halo scraping in each quadrant.

3 capacitive probes (BPM); beam capacitive pickup $((n_b - n_e)/n_b)$. 2 Short flush collector (FLS); similar to FLL, electrons from wall. 2 Gridded e⁻ collector (GEC); expelled e⁻ after passage of beam 2 Gridded ion collector (GIC): ionized gas expelled from beam

The Heavy Ion Fusion Science Virtual National Laboratory

Diagnostics developed to measure all sources and some sinks of electrons

Point source of electrons to simulate synchrotron radiation photoelectrons

Electron gun enables quantitatively controlled injection of electrons

Electron gun operates over range

~10 eV to 2000 eV (cathode & grid indep.)

<1 mA to 1000 mA

Molvik - ILCDR06 - 27 Sept 06

Outline

- 1. E-cloud tools available for ILC R&D
- 2. Clearing electrode experiments
- 3. Clearing electrode simulations
- 4. Summary

Clearing electrode removes all electrons from a drift region

Suppressor bias = 0 V, electrons can leak back into quads along beam.

 Clearing electrode ring (C) – blocks electrons from (B) when biased more negatively than -3 kV

 Clearing electrode ring (B) [with V_c= 0] blocks electrons from (A) when biased more negatively than -3 kV

Clearing electrode fields, above 2 kV bias, dominate over beam space-charge field

For ILC, probably sufficient for clearing field to dominate over beam space charge averaged over a few bunches (easier), or remove electrons in period between bunches (harder).

Trapping depth of electrons depends upon their source, in a quadrupole magnet (without multipactor)

E-cloud in a quadrupole magnet [Electron mover also speeds simulation in wiggler fields]

Gridded Electron Collectors (GEC) current measures electron depth of trapping

Weakly trapped electrons cleared with ~300 V bias, whereas deeply trapped require >1000 V

- Weakly trapped electrons originate on or near a wall (beam tube) turning points near wall.
- Deeply trapped electrons originate from beam impact ionization of gas, or scattering of weakly trapped electrons turning points within beam.

Outline

- 1. E-cloud tools available for ILC R&D
- 2. Clearing electrode experiments
- 3. Clearing electrode simulations
- 4. Summary

WARP-POSINST code suite is unique in four ways

High-density electron oscillation provides benchmark of simulations

Array of BPMs in Quad 4 verified simulation results

Beam Position Monitor (BPM): electrode capacitively coupled to beam

HCX experiment and WARP

BERKELEY LAB

Outline

- 1. E-cloud tools available for ILC R&D
- 2. Clearing electrode experiments
- 3. Clearing electrode simulations
- 4. Summary

Summary of capabilities

- Diagnose e-cloud density, electron sources, emission coefficients, mitigate, measure effects on beam.
- Diagnose gas cloud desorption coefficients, velocity.
- Model combined gas and electron clouds and validate with experiment.
- LLNL & LBNL engineering variety of accelerator skills including UHV, cooling, rf, working in close collaboration with physicists.

Conclusions

- Clearing electrode rings are effective at removing 'all' electrons from drift region
 - HCX experiment available for testing diagnostics and selected clearing electrode designs, between or in quads.
- Simulations benchmarked against experiment accurately reproduce many details of experiment
 - Simulations can explore a variety of 3-D clearing electrodes or coatings to mitigate electrons
 - Then, experiment can test selected solutions for

effectiveness

Backup slides

Molvik - ILCDR06 - 27 Sept 06

Retarding field analyzer (RFA) measures energy distribution of expelled ions

- RFA an extension of ANL design (Rosenberg and Harkay)
- Can measure either ion (shown) or electron distributions
- Potential of beam edge ~1000 V, beam axis ~ 2000 V

RPA 03/01/05

Ref: Michel Kireeff Covo, Physical Review Special Topics – Accelerators and Beams 9, 063201 (2006).

The Heavy Ion Fusion Science Virtual National Laboratory

Molvik - ILCDR06 - 27 Sept 06

– A first – time-dependent measurement of absolute electron cloud density*

The Heavy Ion Fusion Science Virtual National Laboratory

Simulations with beam reconstructed from slit scans – improved agreement

Beam potential when electrons are detrapped can indicate their origin

- **Requires electron bounce** time (~10 ns) short relative to beam tail decay (~1 μ s)
- High detrapping energy of ٠ electrons \Rightarrow gas ionization (or scattered e-)
- Low detrapping energy \Rightarrow efrom walls (or near walls). Why >400 eV width?
- **Electrons with E_t \ge 1500 \text{ eV}** • decrease with volume of e-
- Beam potential measured with • **RPA**, from energy of expelled ions (from beam impact on gas) [Michel Kireeff Covo]

Electron accumulation and effects on beam transport in solenoidal field – initial experiments

Molvik - ILCDR06 - 27 Sept 06