

Cornell University Laboratory for Elementary-Particle Physics

ILC Damping Ring R&D Using CESR Mark Palmer

Cornell Laboratory for

Accelerator-Based Science and Education

• Possibilities for CESR as an ILC Damping Ring Test Facility (CesrTF)

Outline

- CesrTF Overview
- What Can CesrTF Offer?
- CESR-c ⇒ CesrTF Conversion
 - CESR Modifications
 - CesrTF Low Emittance Optics
- Proposed CesrTF Schedule
- CesrTF R&D Program
- Conclusion

CesrTF Overview

- CESR-c HEP operations scheduled to conclude on March 31, 2008
- Design studies are presently underway to modify CESR for ILC Damping Ring R&D ⇒ CesrTF
- 4 Key Questions:
 - 1. What can CESR offer as a damping ring test facility?
 - 2. How extensive are the required modifications?
 - 3. What is the resulting experimental reach?
 - 4. Can important R&D results be provided in a timely fashion for the ILC TDR and (*hoped for*) start of construction?

South (CLEO) and North Interaction Regions

- Reconfigure CESR as a damping ring test facility
 - Move wigglers to zero dispersion regions for low emittance operation
 - Open up space for insertion devices and instrumentation
- Explore issues critical to the design and operation of the ILC damping rings
- Provide an R&D program that is complementary to work going on elsewhere (eg, KEK-ATF)
- Provide a vehicle for
 - R&D needed for the TDR
 - Operating and tuning experience with ultra-low emittance beams
 - DR technical systems development
- Provide significant amounts of dedicated running time for damping ring experiments

1) What Can CESR Offer?

CESR offers:

- The only operating wiggler-dominated storage ring in the world
- The CESR-c damping wigglers
 - Technology choice for the ILC DR baseline design
- Flexible operation with positrons and electrons
- Flexible bunch spacings suitable for damping ring tests
 - Presently operate with 14 ns spacing
 - Can operate down to 2 ns spacings with suitable feedback system upgrades
- Flexible energy range from 1.5 to 5.5 GeV
 - CESR-c wigglers and vacuum chamber specified for 1.5-2.5 GeV operation
 - An ILC DR prototype wiggler and vacuum chamber could be run at 5 GeV
- Dedicated focus on damping ring R&D for significant running periods after the end of CLEO-c data-taking
- A useful set of damping ring research opportunities...
 - The ability to operate with positrons and with the CESR-c damping wigglers offers a unique experimental reach

CesrTF Goals

- Primary Goals
 - Electron cloud measurements
 - e⁻ cloud buildup in wigglers
 - e⁻ cloud amelioration in wigglers
 - Instability thresholds

- Validate the ILC DR wiggler and vacuum chamber design (critical for the single 6 km positron ring option)
- Ultra-low emittance operations and beam dynamics
 - Study emittance diluting effect of the e⁻ cloud on the e⁺ beam
 - Detailed comparisons between electrons and positrons
 - Also look at fast-ion instability issues for electrons
 - Study alignment issues and emittance tuning methods
 - Emittance measurement techniques
- ILC DR hardware testing
 - Wigglers, wiggler vacuum chamber, SRF, kickers, alignment & survey techniques, instrumentation, *etc*.

2) CESR Modifications

- Move 6 wigglers from the CESR arcs to the North IR (zero dispersion region)
 - New cryogenic transfer line required
 - Zero dispersion regions can be created locally around the wigglers left in the arcs
- Make South IR available for insertion devices and instrumentation
- Instrumentation and feedback upgrades

The North IR

18 m region for wigglers and instrumented vacuum chambers

North IR Modifications:

- 6 wigglers
- Cryogenics capability
- Instrumented vacuum chambers for local electron cloud diagnostics
- Eventual test location for prototype ILC damping ring wiggler and vacuum chambers
- Move present streak camera diagnostics area to South IR

The South IR

South IR Modifications:

- Approx. 14 m of insertion device space available after CLEO removal
- Cryogenics infrastructure available
- Beige volumes indicate insertion regions
- Support for beam instrumentation

RF Cavities for short bunch length operation shown here

> Possible location for laserwire installation. A 0.26 X_0 Al window is available 16.1 m to the west. It is also possible to place a 2nd window in the east.

EAS

- Typical Beam Sizes
 - Vertical: $\sigma_y \sim 10-12 \,\mu m$
 - Horizontal: $\sigma_x \sim 80 \ \mu m$ (at a zero dispersion point)
- Have considered laserwire and X-ray profile monitors
 - Fast X-ray imaging system (Alexander)
 - Core diagnostic for CesrTF
 - Plan for integrating systems into CHESS lines
 - Laserwire
 - CESR-c fast luminosity monitor offers window suitable for laserwire use
 - Detector potentially could be used for fast segmented readout of Compton photon distribution

- Answer to question #2:
 - Significant changes to the two IRs (however, certainly no more difficult than a detector and IR magnet upgrade)
 - Cryogenics transfer line must be run to the North IR
 - 6 wigglers must be moved to the North IR
 - Feedback amplifiers and electronics will be upgraded to allow operation with 4 ns bunch spacing
 - Could go to 2 ns with a more substantial upgrade is this desirable?
 - Instrumentation must be upgraded
 - Extend multi-bunch turn-by-turn BPM system to entire ring (presently single sector)
 - High resolution emittance measurement techniques
- Conversion is relatively modest
 - Approximately 7 months of down time required (with existing laboratory resources) to remove CLEO and carry out the conversion
 - Key preparation work carried out between now and April 2008

3) Experimental Reach

Baseline Lattice

Parameter	Value
E	2.0 GeV
N _{wiggler}	12
B _{max}	2.1 T
ε _x	2.25 nm
Q _x	14.59
Q _y	9.63
Qz	0.098
$\sigma_{\rm E}/{\rm E}$	8.6 x 10 ⁻⁴
$\tau_{\mathrm{x,y}}$	47 ms
σ_{z} (with V _{RF} =15MV)	6.8 mm
α _p	6.4 x 10 ⁻³
$\tau_{Touschek}(N_b=2x10^{10}\&\epsilon_y=5pm$)	7 minutes

Sept 27, 2006

ILC Damping Rings R&D Workshop

Tune scans

• Tune scans used to identify suitable working points

Lattice Evaluation

- Dynamic aperture
 - 1 damping time
 - Injected beam fully coupled ²⁵
 - ex = 1 mm
 - ex = 500 nm
- Y (mm) • Alignment sensitivity and low emittance correction algorithms
 - Simulations based on nominal CESR alignment

_	capabilities	Misalignment	Nominal Value
		Quadrupole, Bend and Wiggler Offsets	150 µm
		Sextupole Offsets	300 µm
		Quadrupole, Bend, Wiggler and Sextupole Rotations	100 µrad

Vertical Emittance Sensitivities (Selected Examples)

Low Emittance Operations

- Have evaluated our ability to correct for ring errors with the above lattice
 - Goal: $\varepsilon_y \sim 5-10 \text{ pm}$ at zero current
 - Simulation results indicate that we can reasonably expect to meet our targets

Correction Type	Average Value	95% Limit		
Orbit Only	10.2 pm	21.4 pm		
Orbit+Dispersion	3.9 pm	8.2 pm		

IBS Evaluation (Baseline Lattice)

ILC Damping Rings R&D Workshop

Alternate Operating Point

- Want to study ECE impact at ILC DR bunch currents
 - 2.5 GeV lattice with $\sigma_z \sim 9$ mm
 - Zero current vertical emittance chosen to be consistent with above alignment simulations
 - This emittance regime appears consistent with studying the impact of the ECE (and other effects) on emittance dilution
- Presently working towards more complete beam dynamics simulations

- Immediate Plans
 - Conceptual design work and validation complete by Fall
 - Proposal submission before end of year
- FY07
 - Engineering design work
 - Begin fabrication of items critical for 2008 down
- End of scheduled CESR-c/CLEO-c physics: Mar 31, 2008
- First dedicated CesrTF run in June 2008!
 - Alternating operation with CHESS
 - Estimate ~4 months/year of operations as a DR test facility
- This schedule is consistent with:
 - Early results before TDR completion
 - Significant program contributions before start of ILC construction

The Next 1.5 Years

- Continue to develop the CesrTF Conversion Plan
- Prepare for wiggler vacuum chamber studies
 - Collaboration: SLAC, LBNL
- Machine Studies
 - See presentations by D. Rice and L. Schachter about electron cloud and ion studies
 - Plan to continue such work through the end of CESR-c
 - Low emittance CESR-c (existing machine layout) optics have been designed: $\epsilon_x \sim 6.5$ nm
- General infrastructure preparation as can be supported by manpower and funding resources

Proposed Transition Plan

FY08										FY	09		
Aj	or May	J	Jun	Jul	AugSeptOctNovDec		Jan	Feb	Mar				
D o w n	CHESS	C	Cesr TF	Down for North IR Conversion		th IR n	CHES	S Cesr		esrTF	Down for South I Conversion (4 mon		
In w	stall/Test 2 v /modified V Chambe	viggle acuui rs	lers ım	Install/T supp	Fest full v port) and v	viggler co vacuum d	mplemen iagnostics	t (inc s in N	ludi Iorth	ng cryo I IR.			
Instrumentation and Vacuum Diagnostics Upgrades													
	LiCAS Alignment/Survey Upgrades												

- Initial focus on local ECE measurements
 - Provides key TDR information
 - Provides guidance for subsequent CesrTF investigations
- Start exploring low emittance operations

Prototype Operations Schedule

		FY	09			FY10									
May	May Jun		Jul	A	ug	Sept	Oct		Nov	De	ec	Jan	Feb	Mar	Apr
CHE	CHESS		CesrTF		D	CHE	SS		CesrTF			CHESS	Се	CesrTF	
Suppor	rting		Flexible	;	0	Suppor	rting		Flexible	e	S	upporting	Fle	Flexible	
work can Operations		15	W	work can		(Operation	ns	work can		Ope	Operations			
occur here and Machine		ine	n	occur here		a	nd Mach	ine	occur here		and N	and Machine			
(eg, Ac		Access			(eg	,	Access				(eg,	A	ccess	type	
instrument-				instrument-				instrument-				Wig-			
ation)			ation)						ation)			gler?			
Running periods						Running periods					Running periods				
approximately				approximately					approximately						
50% CHESS/50% CesrTF						50% CHESS/50% CesrTF				F	50% CHESS/50% CesrTF				

- Schedule along these lines presently under consideration
 - Other variations clearly possible
 - Need input from ILC DR community as to machine time and operating schedule during CesrTF "runs"
 - Provides 4 dedicated running periods prior to TDR completion
- Envision a 5-year NSF operations proposal: April 1, 2008 March 31, 2013
 - Last 3 years would have a similar operating schedule to the FY09-FY10 version

- CesrTF will be a collaborative endeavor
 - LEPP will operate the machine
 - LEPP will also contribute to the experimental program
 - We expect to provide a significant fraction of the machine time to collaborator experiments
 - LEPP will provide accelerator physics and machine support for collaborator experiments
- Expressions of Interest from members of the damping ring community are most welcome!

CesrTF R&D Program

- Cornell Interests
 - Electron cloud studies (with particular focus on its growth and amelioration in the wigglers)
 - Low emittance operation over full range of ILC bunch currents
 - Tuning (WBS 2.1.3)
 - Study impact of beam dynamics effects (WBS 2.2.3 electron cloud, WBS 2.2.4 ions, WBS 2.2.5 IBS/Touschek lifetime , ...)
 - System prototype tests
 - ILC wiggler prototype along with vacuum chamber (WBS 3.4.6, WBS 3.1.1)
 - Instrumentation and methods (WBS 3.7.3 fast X-ray beam profile monitor, WBS 3.7.5 fast dispersion measurements, ...)
 - Other (WBS 3.5.1 kicker, WBS 3.6.1 SRF)
- Collaboration/Coordination
 - Electron Cloud Simulation/Measurement/Suppression (M. Pivi, L. Wang SLAC; L. Schachter Technion; K. Harkay ANL)
 - Wiggler vacuum chamber (S. Marks, *etal.* LBNL; M. Pivi, L. Wang SLAC)
 - Alignment and Survey (A. Reichold, D. Urner LiCAS, Oxford)
 - Requirements and experimental plan (J. Urakawa KEK; A. Wolski Cockroft Inst.)
 - Low emittance instrumentation (G. Blair Adams Inst.)
 - Simulation (A. Wolski Cockroft Inst., M. Pivi SLAC; P. Spetznouris FNAL)

- CesrTF conceptual design work is ongoing
 - The machine offers unique features for critical ILC damping ring R&D
 - CESR-c wigglers
 - Operation with positrons and electrons
 - Flexible bunch configuration
 - Wide range in operating energy
 - Simulations indicate that the emittance reach is suitable for a range of damping ring beam dynamics studies
 - The experimental schedule will allow timely results for ILC damping ring R&D
- We would like to extend an open invitation to anyone interested in collaborating on this project

• Extra Slides Follow

Luminosity Monitor Window

- Available for laserwire use
- Aluminum γ Window
 - Faces into South IR
 - ~ 1 in thick (0.26 X₀)
 - 16.1 m from center of CesrTF insertion region
 - Looks at e⁺ beam
 - Aperture (for 16.1 m):
 - +/- 1.7 mrad vertical
 - -7 to +2 mrad horizontal (negative is to inside of ring)
- A similar window, but with smaller horizontal aperture, could potentially be added for monitoring the electron beam

Radiative Bhabha y Detector \Rightarrow Compton γ Detector ?

Vertical

Segmented Scintillator Detector

- Offers possibility of more detailed signal analysis with background suppression
- Fast R7400 PMTs offer bunch-by-____ bunch response

(intersection) (inter

 $\sigma = 0.96$

 $\mu = 0.06$

CESR-c Wiggler

CESR-c Wiggler End View

GaAs Detector

ILC Damping Rings R&D Workshop

Survey and Alignment

Lattice Comparisons

	CesrTF	ATF	TESLA	ILC 6.7 km
Cicumference (m)	768	139	17000	6695
Energy (GeV)	2.0	1.28	5.0	5.0
Horizontal Emittance (nm)	2.25	1.0	5.1	0.515
Vertical Emittance (pm)	5.0 (target)	4.5	1.4	1.4
Energy Spread (x10 ⁻³)	8.6 x10 ⁻⁴	5.5 x10 ⁻⁴	1.3 x10 ⁻³	1.3 x10 ⁻³
$\mathbf{J}_{\mathbf{x}}$	1.0	1.6	1.0	1.0
$\mathbf{J}_{\mathbf{y}}$	1.0	1.0	1.0	1.0
Q _x	14.53	15.141	76.310	52.397
Q _y	9.59	8.759	41.180	49.305