

Cornell University Laboratory for Elementary-Particle Physics

Status of Fast Pulser and Kicker Work at UIUC and Cornell *Robert Meller* Cornell University Laboratory for Elementary-Particle Physics

- Contributing Personnel :
- LEPP
 - G. Dugan, R. Meller, M. Palmer, D. Rubin
- UIUC
 - G. Gollin, M. Davidsaver, J. Calvey
- FNAL
 - H. Edwards, R. Fliller, J. Santucci

Overview:

- Baseline ILC Damping Ring Configuration
 - 2820 bunches per train with a train repetition rate of 5 Hz
 - Bunch spacing 3.08 ns for 6.7 km baseline ring recommendation
 - Fast stripline kickers
 - Represent the baseline technology recommendation
 - Closely approach the required specifications but technology needs further validation
- Further R&D Requirements:
 - A bunch structure in the main linac utilizing more bunches and smaller bunch charge has been proposed: 5000-6000 bunches per train with train repetition rate of 5 Hz
 - Requires higher duty cycle system
- Present efforts intended to provide input for the Reference Design Report

We chose to evaluate a new technology which has recently been commercialized. The Fast Ionization Dynistor (FID) is a solid-state switch with extremely fast switch-on time and high peak power capability.

- How long will this thing last in continuous service?
- Will the pulse repeatability be adequate?
- Will there be significant crosstalk to adjacent bunch locations?

FID Technology Catalog

Pulser:	FPG2-3000- MC2	FPG1-3000	FPB3-3000	FPG10-3000
Output Impedance [Ohm]	50	100	100	100
Maximum Output per channel [kV]	+/- 1	1	3	10
Number of Channels	2	1	1	1
Rise Time, 10-90% of amplitude [ns]	0.6-0.7	0.6-0.7	0.6-0.7	0.6-0.7
Pulse Duration at 90% of maximum	2-2.5	2.5-3	2.5-3	2.5-3
Fall Time 90-10% of amplitude [ns]	1-1.5	1-1.5	1-1.5	1.2-1.7
Maximum PRF in burst mode [MHz]	3	3	3	3
Maximum PRF in continuous mode [kHz]	15	15	15	15
Amplitude Stability, burst mode [%]	0.5-0.7			
Pre-pulse, after-pulse [%]	1.5			
Time Jitter relative to trigger [ps]	20			

The unit that we obtained uses a step-recovery diode as the pulse forming device, which is driven by a resonant network pumped by a solid state switch.

- However, it does not contain an FID. It uses a MOSFET as the pumping device.
 - Our original goal of evaluating a new technology remains untouched.
 - You just have to ask the right questions.

A0 Kicker, Looking Upstream

A0 Diagnostic Line

Version 1: Test Results

- Present focus is on obtaining a suitable high voltage pulser
 - Pulser width: $w_{max} = 2t_{bunch} 2t_{stripline} \sim 4 \text{ ns}$, for $t_{bunch} \sim 3 \text{ ns}$ and $t_{stripline} \sim 1 \text{ ns}$
 - Have acquired a FID Technology F5201 Pulser for evaluation:
 - Dual channel: +/-1 kV with 0.5% 0.7% typical amplitude stability
 - 0.7 ns rise time / 2.0 ns top of pulse / 1.2 ns fall time
 - 3 MHz max. burst rate with 15 kHz max. average rate with <20 ps timing jitter
 - Up to 10 kV devices available with similar specifications
- Initial tests at A0 Photoinjector
 - Stripline kicker provided by FNAL
 - DAQ system provided by UIUC collaborators (G. Gollin, *et al*)
 - Figure shows both polarity pulses as observed after kicker with 46 dB attenuation (200V/div)
 - Failure in power and timing circuits during beam test
 - Unit was repaired and failed again 1 ns during a bench test

Timing diagnostics

- Pulser waveforms with scope externally triggered from timing support system
 - Note additional dispersion of traces in time domain.
 - Better timing support may be needed.
 - Traces with pulser off show
 backward-coupled signals
 from passing charge bunch.
 - These beam induced signals verify that the pulse overlaps the beam passage in the kicker.

Beam-Induced Signals

Backward coupled beam signals from 2.3 nC bunch, 200V/div.

Beam-Induced Signals

Forward coupled beam signals from 2.3 nC bunch, 200v/div. Magnitude comparable to backward pulse.

Beam-Induced Signals

Forward coupled beam signals from 5.2 nC bunch, 100V/div.

Version 2 of FID Pulser

Replacement pulser

- Function similar to version 1
 - Trailing tail somewhat -744 sups longer 1 ns 1.00 V
- Stability
 - Treat full vertical width as $+/-3\sigma$ band
 - Suggests ~0.7% amplitude stability, consistent with specification

- Scope is self-triggered

1 ns

- Pulser waveforms triggered from A0 timing system
 - Oscilloscope is externally triggered

Pulser internal timing

- First pulse of self-generated train
 - Oscilloscope is internally triggered on pulse leading edge

ILC Damping Rings R&D Workshop at Cornell

Pulser internal timing

- Second pulse of self-generated train
 - Oscilloscope is internally triggered on first pulse

Crosstalk to cold bunches

• This type of circuit will impact preceding bunches

The 30ns charging cycle of the device couples to the output at the level of 1% of the primary pulse amplitude (20V/div).

Cornell University Laboratory for Elementary-Particle Physics

Time Scan of Kick Angle

• Full width: ~8.5 ns

Timing Scan with Beam Full width ~8.5 ns with ~2.1 ns stripline

Effective Kick Error

- Ideally want to verify stability at 0.1% level
- Establish baseline stability (beam and DAQ) with straight through tracks at A0
- Top of peak observations have about 2.5-3 times the variation of the baseline
 - Timing Stability (consistent with 100ps RMS noise @ 4mrad/ns slope)
 - Pulser stability (potentially consistent with scope measurements and pulser specifications)

• Extrapolate A0 kick measurements to a hypothetical ILC damping ring kicker:

- Pulse Width
 - Full width ~8.5ns
 - Note that A0 kicker is ~2 ns long
 - With a 1 ns kicker, full width around 6.5 ns
 - ILC requirement is 6.2 ns
- Pulse Stability
 - Appears to be near pulser specification
 - With a long enough kicker, the beam sees the entire integrated pulse, and an effective flat-top occurs
 - With a shorter kicker, effective kick may become a stronger function of pulse shape and timing

A0 Planning

- Potential Improvements
 - Still potentially sensitive to machine stability issues
 - For stability measurements (at the 0.1% level) would like better resolution
 - BPM signal processing
 - BPM spacing (moment arm for angular detection)
 - Better stability timing support for pulser triggering
 - For higher voltage pulsers
 - Corrector magnet needs to be mounted around kicker vacuum chamber to avoid scraping on limited aperture
 - Also minimizes energy corrections in measurement and systematic errors from downstream BPMs
 - Some additional attention to the DAQ
 - DAQ software needs to be able to scan
 - Review of low level BPM control, such as autoranging