Linear Colliders.

A Vision of a Linear Collider at CERN for the European Strategy

Benno List KET workshop "The future of collider physics", DESY, Hamburg, Nov 28, 2024

HELMHOLTZ

Plan of the Talk

- Linear Colliders Introduction
- The Projects ILC, CLIC, C3, HALHF
- LCVision: A Vision for a Linear Collider Facility at CERN
- Schedule, Costs, Organisation, and Risks
- Sustainability
- Conclusions and Outlook

Linear Colliders — Introduction

Linear Colliders

The path to the energy frontier in e+e- collisions

- Linear colliders are the e+e- energy frontier machines
- Linear colliders have **increasing** luminosity with energy, luminosity/power approx. constant
- Energy frontier facility has a rich, guaranteed physics program at 250, 350, 550 GeV up to 1TeV
- Z⁰ running at 100x LEP luminosity (3x10³³)
- Polarisation
- CLIC technology can reach 2 TeV
- **Complementarity** between circular and linear colliders

DESY. KET workshop, DESY 2024 | Linear Colliders | Benno List, 28.11.2024

Linear Accelerator Design Challenges

Linear Collider Project Properties

What makes a linear collider an attractive project in uncertain times

- Expandable make them longer for more beam energy
 - Cost of initial configuration can be kept reasonable (staging)
 - Additional contributions from outside partners directly increase beam energy or luminosity
 - Upgrade with future, improved accelerator technologies
- Flexible
 - Project can be adjusted to changes in physics knowledge, competition, or funding
- Highly modular
 - Much of project value is in acceleration modules with industrial production basis in several regions
 - Performance is given by sum of all modules

 > lower performance of individual modules can be compensated -> easier ramp-up
 > reduces risk: financial and technological

The Projects

KET workshop, DESY 2024 | Linear Colliders | Benno List, 28.11.2024

ILC in a nutshell

International Linear Collider ILC

- Superconducting Cavities, Nb 1.3GHz, 31.5 (35) MV/m
- Klystrons
- 250GeV CME, upgradeable to 500, 1000 GeV
- $L = 1.35 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (at initial 250GeV)
- 20km length, site proposal: Tohoku / Japan
- Polarisation 80%(e-), 30%(e+)
- Based on proven technology (European XFEL)

ltem	Parameters
C.M. Energy	250 GeV
Length	20km
Luminosity	1.35 x10 ³⁴ cm ⁻² s ⁻¹
Repetition	5 Hz
Beam Pulse Period	0.73 ms
Beam Current	5.8 mA (in pulse)
Beam size (y) at FF	7.7 nm@250GeV
SRF Cavity G.	31.5 MV/m (35 MV/m) Q ₀ = 1x10 ¹⁰

ILC Baseline, extension and upgrades

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	E / L	C Upgrad	es
Centre of mass energy	\sqrt{s}	${\rm GeV}$	250	250	91.2	500	250	1000
Luminosity	$\mathcal L$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	f_{rep}	$_{\rm Hz}$	5	5	3.7	5	10	4
Bunches per pulse	n_{bunch}	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	N_e	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	Δt_b	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	\mathbf{mA}	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	t_{pulse}	μs	727	961	727/961	727/961	961	897
Accelerating gradient	G	MV/m	31.5	31.5	31.5	31.5	31.5	45
Average beam power	P_{ave}	$\mathbf{M}\mathbf{W}$	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	σ_z^*	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_x$	$\mu\mathrm{m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ_x^*	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	σ_y^*	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73~%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	δ_{BS}		2.6~%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power	P_{site}	$\mathbf{M}\mathbf{W}$	111	138	94/115	173/215	198	300
Site length	L_{site}	\mathbf{km}	20.5	20.5	20.5	31	31	40

Luminosity upgrades:

- 2 x bunches, 1.5 x RF (1.35 -> 2.7x10³⁴)
- Run 500GeV machine at 250GeV, 10Hz: factor 2 (2.7x10³⁴ -> 5.4x10³⁴)
- Improves power efficiency

Energy upgrades:

- 500GeV (31.5 MV/m Q₀=1 x 10¹⁰)
- 1TeV (45 MV/m $Q_0=2 \times 10^{10}$, 300 MW) more SCRF, tunnel extension
- Kitakami site: 50km long, sufficient for 1TeV

References: arXiv:1903.01629 (EPSUU), 2203.07622 (Snowmass)

Kitakami mountains

The Compact Linear Collider (CLIC)

- **Timeline:** Electron-positron linear collider at CERN for the era beyond HL-LHC
- Compact: Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- Expandable: Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier) presented in previous ESPP updates
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.

The CLIC ESPP Update

Guidelines:

Preparing "**Project Readiness Report**" as a step toward a TDR Assuming ESPP in ~ 2025-6, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

However, several important changes:

- Energy scales: 380 GeV and 1.5 TeV with one drivebeam
- Consider also 100 Hz running at 250 GeV (i.e. two parallel experiments, two BDSs)
- Several updates on parameters (injectors, damping rings, drive-beam) based on new designs, results and prototyping (e.g. klystrons, magnets) - however no fundamental changes beyond staying at one drivebeam
- **Technology results updates**, including more on use of them in other projects (e.g. alignment, instrumentation, X-band RF is small linacs)
- Update costing and power interplay between inflation and CHF
- Life Cycle Assessments
- More detailed prep phase planning (next 5-7 years)

Project summary for Snowmass already include some of these changes, i.e. luminosity improvements, 100 Hz study, power update for 380 GeV: <u>LINK</u>

Table 1.1: Key parameters of the CLIC energy stages.

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of \sqrt{s}	$1{ imes}10^{34}{ m cm}^{-2}{ m s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\rm fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim \! 60/1.5$	$\sim 40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20

DESY. KET workshop, DESY 2024 | Linear Colliders | Benno List, 28.11.2024

8 km footprint for 250/550 GeV CoM \Longrightarrow 70/120 MeV/m

Large portions of accelerator complex compatible between LC technologies

- Beam delivery / IP modified from ILC (1.5 km for 550 GeV CoM), compatible w/ ILC-like detector
- Damping rings and injectors to be optimized with CLIC as baseline

• Snowmass paper:

https://arxiv.org/pdf/2203.07646.pdf

DESY. KET workshop, DESY 2024 | Linear Colliders | Benno List, 28.11.2024

Cahill, A. D., et al. PRAB 21.10 (2018): 102002.

Scenario	$C^{3} - 250$	C^{3} -550	C^3 -250 s.u.	C^3 -550 s.u.
Luminosity $[x10^{34}]$	1.3	2.4	1.3	2.4
Gradient [MeV/m]	70	120	70	120
Effective Gradient [MeV/m]	63	108	63	108
Length [km]	8	8	8	8
Num. Bunches per Train	133	75	266	150
Train Rep. Rate [Hz]	120	120	60	60
Bunch Spacing [ns]	5.26	3.5	2.65	1.65
Bunch Charge [nC]	1	1	1	1
Crossing Angle [rad]	0.014	0.014	0.014	0.014
Single Beam Power [MW]	2	2.45	2	2.45
Site Power [MW]	~ 150	~ 175	~ 110	~ 125

C3 Recent Developments and Immediate Plans

Towards a technology demonstrator

QCM:

- Delivery of prototype quarter cryomodule (QCM) expected Fall 2024
- Address Gradient, Vibrations, Damping, Alignment, Cryo, etc

C³ Prototype One Meter Structure

HALHF: A hybrid, asymmetric, linear Higgs factory

The concept enables us to work towards :

- Performance of the plasma linac? (Emittance, efficiency, effective gradient, tolerances, polarization...)
- How to integrate a plasma linac in a collider? (linac technology, time structure, drive-beam scheme..)
- Requirements of the plasma source? (Rep. rate, time structure, heating..)
- Asymmetric collisions? (Specific to HALHF)

e- BDS

Higgs Factory Detector Concepts

- low mass tracker: eq VTX: 0.15% rad. length / layer)
- calorimeters
- highly granular, optimised for particle flow
- or dual readout, LAr, ...

For LCs, bunches inside trains

- at ILC: Δt_b = 554 ns; f_{rep} = 5 -10 Hz
- at CLIC: $\Delta t_b = 0.5 \text{ ns}$; $f_{rep} = 50-100 \text{ Hz}$

The lower collision rate enables

- passive cooling only => low material budget
- triggerless operation

LCVision: a Vision for a Linear Collider Facility at CERN.

A Linear Collider Facility at CERN

A Linear Collider Vision

- What could be the initial technology?
 - For many years, CERN pioneered CLIC
 from 380 GeV to 3 TeV
 - drive beam technology demonstrated
 - for first stage klystron option
 - detailed design and costing
 => first stage can be built within CERN budget (shown in CLIC Project Implementation Plan, 2018)
- However, could also consider to start out with a linear collider based superconducting RF
 - proven and industrialised technology
 - strong general interest in technology around the world
 - significant industrial production capacities in Europe (and elsewhere)
 - strong lab expertise outside of CERN => could take significant load off CERNs shoulders while still busy with / paying off HL-LHC
 - CERN site actually been studied for ILC TDR...

Opportunity to minimize time until next project => crucial for next generation of our community!

CLIC: e⁺e⁻ @ 0.38, 1.5, 3 TeV Conceptual Design 2012 Updated Baseline in 2017 & 2021 for Snowmass 2-beam acceleration

LC Vision: Preparing EPPSU inputs

A forum to make the physics case and develop a proposal for a linear collider facility at CERN

A Linear Collider Facility at CERN

Concept under discussion in LCVision team

- Initially facility
 - Based on superconducting (ILC) technology
 - Higgs factory with 250 GeV (length: 20.5km) alternative 550 GeV (33.5km)
 - Luminosity 2.7.10³⁴ at 250GeV, alternative 5.4.10³⁴
 - Two interaction points (sharing luminosity)
 - Single tunnel, TBM (tunnel boring machine),
 5.6m diameter -> suitable for Geneva area
 - Space for extracted beam facilities for non-colliding experiments and R&D
 - Compatible with upgrades to 1 ... 1.5TeV
- Upgrade paths
 - Luminosity (more power, energy/particle recovery)
 - Energy (new technology or extended tunnel)
 - Possible technologies: CLIC, C³, plasma, ERL...

Siting Study at CERN

Siting study (including cost estimate) for CERN in preparation, based on CLIC siting

Running Scenarios

A flexible, 20 years+ program

- Different scenarios:
 - Start with a minimal machine at 250 GeV, upgrade later
 - Or, exploit highest energies first, if full 550GeV available
- All scenarios take into account ramp up time (10%/30%/60% lumi in first 3 years)
- Assumption: 75% availability, 8 months running
 -> 1.6E7 seconds / vear

		$\int \mathscr{L} dt$	$[fb^{-1}]$	
\sqrt{s}	G-20	H-20	I-20	Snow
250 GeV	500	2000	500	1150
350 GeV	200	200	1700	200
500 GeV	5000	4000	4000	1600

Table 1: Proposed total target integrated luminosities for $\sqrt{s} = 250, 350, 500 \text{ GeV}$, based on 20 "real-time" years of ILC operation under scenarios G-20, H-20 and I-20. The total integrated luminosities assumed for Snowmass are listed for comparison based on 13.7 "real-time" years.

Ref: arXiv:1506.07830, arXiv:1710.07621

DESY. KET workshop, DESY 2024 | Linear Colliders | Benno List, 28.11.2024

2nd Interaction Region — for 2nd e+e- detector — or yy / ey / e-e-?

2 different interaction regions for additional physics opportunities

- 2nd Beam Delivery System (BDS) to 2nd Interaction • Region, served "quasi-concurrently", by switching on train-by-train basis have been designed for ILC & CLIC
- eliminating it from ILC baseline "saved" O(0.250) BILCU • - has been reinstantiated for a Linear Collider Facility
- 2 IRs are important for ٠
 - 2 detectors for redundancy, technological complementarity, systematic cross-checks, competition
 - special collision modes: e-e- / γe / $\gamma \gamma$, each adding specialized, unique physics opportunities
 - ...but do of course not double the e+e- luminosity

DESY. KET workshop, DESY 2024 | Linear Colliders | Benno List, 28.11.2024

Beyond e+e- Collisions: Beam Dump & Fixed Target Experiments

Broadening the user base

- Ample opportunities to foresee beam extraction / dump instrumentation / far detectors at a LCF •
 - extraction of bunches before IP -> mono-energetic, extremely stable, few 10¹⁰ @ 1-10 Hz •
 - super-LUXE (SF-QED χ = O(few hundred) & BSM search)
 - super-LDMX,
 - disrupted beam after IP -> broad energy and highly divergent, but up to 10¹⁵ eot / s
 - super-SHIP, generic dark photon and ALP searches see • => together with e+e- cover all Dark Sector portals
- Studied for ILC around 2021

Beyond e+e- Collisions: Test and R&D facilities

low-emittance, mono-energetic beams ideal for

- high-rate detector and beam instrumentation tests
- creating low-emittance beams of photons / muons / neutrons for various applications (hadron spectroscopy, material science, irradiation, tomography, radioactive isotope production, ...
- accelerator development:
 - high-gradient accelerating structures, new final focus schemes, deceleration (for ERLs), beam and laser driven plasma, ...
 - from extracted beam to test small setups to large-scale demonstrators for upgrades of the main facility
- impact on e+e- luminosity?
 - ILC: ~1300 / ~2600 bunches per train
 - extracting 10 bunches per train is few-permille loss in luminosity

Pioneering this *now* at DESY / Eu.XFEL with ELBEX facility (beam extraction for LUXE & other applications)

Upgrade option: Higher Energy

Increasing the energy by conventional accelerator technology

- ILC TDR: upgrade of SCRF machine up to ~1 TeV
 - extend tunnel to ~50 km, upgrade power to 300 MW
 => huge but unsexy? Still: guaranteed fall-back...
- Advanced SCRF
 - higher gradient cavities exist in the lab (> 60 MV/m vs 31.5 MV/m ILC design), though ~10..20 years until industrialisation => upgrade to ~ 1 TeV or less new tunnel
- rip out SCRF and replace by X-band copper cavities (à la CLIC or C³)
 - Raise gradient to 70-150 MV / m
 => double (3x, 4x ...?) energy without tunnel extension
 - sell / donate SCRF modules to build XFELs, irradiation facilities, ... all around the world

LC Vision Baseline: higher energy by advanced technology, tunnel extension fall-back

	ECM [GeV]	Gradient [MV/m]	Length [km]	#of cavities	AC power [MW] ^{*5}
TDR	250	31.5	20.5	~8,000	~110
TDR	500	31.5	<mark>33.5</mark>	~16,000	~170
TDR	1,000	45	<mark>44.5</mark>	~23,000	~300
Nb3Sn/multilayer or TW	500	63	20.5	<mark>~8,000</mark> *2	~180 ^{*6}
NB3Sn/multilayer & TW	1,000	126 ^{*3}	20.5	<mark>~8,000</mark> *4	~260 ^{*7}

Ref: Chap 15 of arXiv:2203.07622

Upgrade Options - Double E_{CM} by "HALHFing" LCF

Employing novel accelerator technologies

Apply HALHF concept to eg 250 GeV ILC:

- plasma-accelerate e- to 550 GeV
- keep e+ linac [1] (small upgrade 125 -> 137.5 GeV)
- ⇒ 137.5 GeV × 550GeV ⇒ E_{CM} = 550 GeV ⇒ upgrade Higgs Factory to tt / tth / Zhh factory
- How?
 - Reduce e- linac energy by 4 to 34.4GeV
 - Drive 16 stage plasma accelerator
 - Use space between electron ML and BDS to install plasma booster
 - Feed boosted electrons into existing BDS^[1]_[SEP](already laid out for E_{beam} ≈ 500 GeV)

Ref: BL, <u>HALHF workshop Erice</u>

		E- (drive)	E- (Collide)	E+
Beam energy	GeV	34.4	34.4 → 550	137.5
Linac Gradient	MV/m	8.7		35
CoM energy	GeV		550	
Bunch charge	nC	4.3	1.6	6.4
Bunches/pulse		10496	656	656
Rep rate	Hz		5	
Beam power	MW	8.0	0.18 ightarrow 2.9	2.9
Lumi (approx.)	cm ⁻² s ⁻¹		~ 1 · 10 ³⁴	

Upgrade Options - Higher Luminosity à la "ReLiC"

Energy recovery: gateway to the highest luminosities

- Energy and particle recovery by de-celaration and re-cooling
- Conceptual study indicates up to O(100) higher luminosity than ILC / CLIC conceivable
- Effectively no beamstrahlung => even Higgs resonance operation not fundamentally excluded (conceptual idea exists but needs verification by beam optics study)

Integrate R&D and demonstrator into initial LCF, upgrade option if successful?

arXiv:2203.06476 [hep-ex]

A Linear Collider Facility and the Energy Frontier

Complementarity to a O(10 TeV)-parton-E_{CM} scale facility

- An e+e- Linear Collider Facility does not pre-emt the choice of how to explore the energy frontier
 => can choose independently based on scientific and technological developments
- nor is it coupled to the site:
 - => if technology ready fast, could start building energy frontier machine without stopping e+e- program

Important: need significant R&D program and demonstrators to bring advanced accelerators to construction readiness - must be part of the overall picture (funding, people, facilities...)

The LCVision Plan

From existing international projects to a new vision for a CERN facility

- Evaluate cost, schedule etc based on existing projects
- Transfer / adapt to CERN
- Input to the European Strategy:
 - Linear Collider physics case (site independent)
 - Linear Collider Facility at CERN proposal
- Will be based on
 - Updated 2024 ILC costs
 - CLIC project implementation plan
 - CERN site study, updated and costed
 - Design adaptions for CERN site
- -> based on data presented in the following

Costs, Schedule, Organisation, and Risks.

ILC International Development Team IDT and ILC Technology Network ITN

From IDT and ITN to LCVision

2020/21: International Development Team IDT: mandated by ICFA, hosted by KEK, to move ILC towards construction

2022/23: ILC Technology Network: Addresses critical technical developments; based on bilateral agreements with KEK, supported by MEXT

2024: LCVision: Group of interested people to formulate a linear collider vision for CERN to be submitted to the EPPSU

LC Vision Overview

Chairs: J. List, S. Stapnes

Coordination Group

Halina Abrahmovic, Erik Adli, Ties Behnke, Ivanka Bosovic, Phil Burrows, Marcel Demarteau, Yuanning Gao, Carsten Hensel, Mark Hogan, Masaya Ishino, Daniel Jeans, Imad Laktineh, Andy Lankford, Benno List, Kajari Mazumar, Shin Michizono, Emmanuela Musumeci, Tatsuya Nakada, Mihoko Nojiri, Dimitris Ntounis, Jens Osterhoff, Ritchie Patterson, Aidan Robson, Daniel Schulte, Taikan Suehara, Geoffrey Taylor, Caterina Vernieri, Marcel Vos, Georg Weiglein, Filip Zarnecki, Jiniong Zhang, Laura Monaco, Patrick Koppenburg, Hitoshi Murayama, Jochen Schieck

Expert Team 1 "Physics-driven run plan and EPPSU documents" Roman Poeschl, Michael Peskin	Expert Team 3 "SCRF upgrades" Sergey Belomestnykh, Hiroshi Sakai, Marc Wenskat	Expert Team 5 "ERL upgrades" Walid Kaabi, Vladimir Litvinenko, Kaoru Yokoya	Expert Team 7 "Beyond Collider" Yasuhito Sakaki, Ivo Schulthess
Expert Team 2	Expert Team 4	Expert Team 6	Expert Team 8
"LCF@CERN"	"C3/CLIC upgrades"	"Plasma upgrades"	"Alternative Collider Modes"
Steinar Stapnes, Thomas	Angeles Faus-Golfe,	Brian Foster,	Tim Barklow, Gudi
Schörner	Enrico Nanni	Spencer Gessner	Moortgat-Pick

ILC Timeline

4-year preparation phase to produce an Engineering Design Report and Project Implementation Plan
After project approval and construction start: 10 years of construction
=> A linear collider facility at CERN would be ready for construction in time for next project

Cost Estimates - ILC

APPENDIX A: ILC250 PROJECT COSTS

- Cost estimates for ILC in 2012 US\$ (today: US\$ ~ CHF) (ILC Currency Unit ILCU), for the Japanese site:
 - TDR: 500GeV, 31.5km tunnel: 7.98 BILCU + 13.5 kFTE-y, operation 390 MILCU/y + 850 FTE
 - Higgs factory: 250GeV, 20.5km tunnel: 5.26 BILCU + 10.1 kFTE-y, operation 316 MILCU + 638 FTE
 - + 2 detectors: 0.71 BILCU + 2.1 kFTE-y
 - Costs include accelerator and civil construction, exclude site activation (roads, power lines) and land acquisition
 - Substantial inflation since 2021
 - Updated cost estimate being prepared for input to European Strategy update, in 2024 prices
 - New estimates for main cost drivers (75% of cost): civil construction and SRF
 - · Other items scaled up for inflation

	TDR: ILC500	ILC250	Conversion to:
	[B ILCU]	[B ILCU]	[B JPY]
	(Estimated by GDE)	(Estimated by LCC)	(Reported to MEXT/SCJ)
Accelerator Construction: sum	n/a	n/a	635.0 ~ 702.8
Value: sub-sum	7.98	4.78 ~ 5.26	515.2 ~ 583.0
Tunnel & building	1.46	1.01	111.0 ~ 129.0
Accelerator & utility	6.52	3.77 ~ 4.24	404.2 ~ 454.0
Labor: Human Resource	22.9 M person-hours	17.2 M person-hours	119.8
	(13.5 K person-years)	(10.1 K person-years)	
Detector Construction: sum	n/a	n/a	100.5
Value: Detectors (SiD+ILD)	0.315+0.392	0.315+0.392	76.6
Labor: Human Resource (SiD + ILD)	748+1,400 person-years	748+1,400 person-years	23.9
Operation/year (Acc.) : sum	n/a	n/a	36.6 ~ 39.2
Value: Utilities/Maintenance	0.390	0.290 ~ 0.316	29.0 ~ 31.6
Labor: Human Resource	850 FTE	638 FTE	7.6
Others (Acc. Preparation)	n/a	n/a	23.3
Uncertainty	25%	25%	25%
Contingency	10%	10%	10%
Decommission	n/a	n/a	Equiv. to 2-year op. cost

http://www.mext.go.jp/component/b_menu/shingi/toushin/__icsFiles/afieldfile/2018/09/20/1409220_2_1.pdf

FIG. 7. Costs of the ILC250 project in ILCU as evaluated by the Linear Collider Collaboration (LCC), converted to JPY and re-evaluated by KEK, and summarised in the MEXT ILC Advisory Panel report, in July, 2018.

CLIC Cost

Machine has been re-costed bottom-up in 2017-18 (LINK)

- Methods and costings validated at review on 7 November 2018 similar to LHC, ILC, CLIC CDR
- Technical uncertainty and commercial uncertainty estimated
- From 380 GeV to 1.5 TeV, add 5.1 BCHF (drive-beam RF upgrade and lengthening of ML)
- From 1.5 TeV to 3 TeV, add 7.3 BCHF (second drive-beam complex and lengthening of ML)
- Labour estimate: ~ 11500 FTE for the 380 GeV construction

• Updated cost in preparation

Domein	Sub Domoin	Cost [MCHF]		
Domain	Sub-Domain	Drive-Beam	Klystron	
	Injectors	175	175	
Main Beam Production	Damping Rings	309	309	
	Beam Transport	409	409	
	Injectors	584		
Drive Beam Production	Frequency Multiplication	379		
	Beam Transport	76		
Main Lines Modules	Main Linac Modules	1329	895	
Main Linac Modules	Post decelerators	37		
Main Linac RF	Main Linac Xband RF		2788	
Beem Delivery and	Beam Delivery Systems	52	52	
Beam Delivery and	Final focus, Exp. Area	22	22	
Post Collision Lines	Post-collision lines/dumps	47	47	
Civil Engineering	Civil Engineering	1300	1479	
	Electrical distribution	243	243	
Infrastructure and Sources	Survey and Alignment	194	147	
infrastructure and Services	Cooling and ventilation	443	410	
	Transport / installation	38	36	
	Safety system	72	114	
Machine Control, Protection	Machine Control Infrastructure	146	131	
and Safety systems	Machine Protection	14	8	
	Access Safety & Control System	23	23	
Total (rounded)		5890	7290	

CLIC 380 GeV Drive-Beam based:	5890^{+1470}_{-1270} MCHF;
CLIC $380 \mathrm{GeV}$ Klystron based:	$7290^{+1800}_{-1540}\mathrm{MCHF}.$

Technological Readiness and Risk

ILC can be built

- Technological readiness of subsystems and key components was evaluated in preparation of ILC technology network and in Snowmass process
- No show stoppers found,
 - positron source is technologically most challenging (TRL 5-6, score 2 from Snowmass implementation task force (arXiv:2208.06030)
- SRF technology fully industrialised (E-XFEL, LCLS-II)
 -> low technology and cost risk

Table 2. Technical risk registry of accelerator components and systems for future e^+e^- and ep colliders: lighter colors indicate progressively higher TRLs (less risk), white is for either not significant or not applicable.

German Perspective

Germany has a long tradition and strong leadership position in linear accelerators

- Strong participation and leadership in
 - Physics studies for e+e-
 - Detector development for ILC, CLIC
 - Accelerator technology
- Strong industrial base for superconducting technology in Germany and Europe
- Lots of experience at DESY
 - SC technology know how
 - Construction and operation experience of E-XFEL
 - Test facilities for material, cavities, cryo modules
- German labs, universities and industry are strong participants for LC projects

Sustainability.

Sustainability Approach

A high priority for all planned projects

- Close collaboration between ILC and CLIC on sustainability aspects, similar efforts by C3
- Common lifecycle assessment (LCA) studies on
 - Civil construction (finished)
 - Accelerator & detectors (ongoing)
- Overarching concepts for sustainable accelerator projects ("Green ILC")
- Address whole lifecycle and all aspects: overall system design, components, operation models

DESY. KET workshop, DESY 2024 | Linear Colliders | Benno List, 28.11.2024

LCA of Civil Engineering Infrastructure

Evaluate the impact to improve it

LCA study of tunnels, shafts and caverns:

Common study for ILC and CLIC (<u>link</u>) Professional consultant company: ARUP Include two design alternatives for CLIC: Two-beam acceleration or klystron driven

Results:

CLIC 2-beam design:	127 kton CO2-e (+ surface bldgs.)
CLIC klystron:	290 kton CO2-e
ILC (250GeV CoM):	266 kton CO2-e

LCA helps to compare design alternatives

LCA identifies reduction potential:

20% from using low carbon cement (CEM III/A)

12% from thinner lining

(9% from future electricity mix -> not a project decision)

LCA of Accelerator

- LCA of accelerator and detectors much more demanding than civil infrastructure:
 - Many different components
 - Many materials, also unusual materials
- ILC and CLIC started LCA effort with ARUP
- Study still ongoing, looking in detail on Main Linac building blocks:
 - ILC Cryomodule
 - CLIC two beam module
- Main Linac components add several tons of CO2 per meter compared to Main Linac tunnels at 6-7 tons/m

Preliminary findings for the CLIC machine

Comparison of CLIC Main Linac for 2-beam and klystron options

2024

Power Consumption: ILC and CLIC

- Power consumption of ILC and CLIC:
 - ILC 250: 111 / 138 MW baseline / luminosity upgrade
 - ILC 500: 164 MW
 - CLIC 380: 107 MW
- For CERN in 2040, assume 12.5g CO₂-e/kWh (today: ~50)
- Yearly energy consumption: 0.6 1.0 TWh
 -> CERN today: 1.2TWh (LHC: ~0.6 TWh)

Power consumption of a linear collider facility is comparable to LHC power consumption today

65th ICFA Adv. Beam Dyn. Workshop High Luminosity Circular e+e- Colliders ISBN: 978-3-95450-236-3 ISSN: 2673-7027 eeFACT2022, Frascati, Italy JACoW Publishing doi:10.18429/JACoW-eeFACT2022-FRXAS0101

Table 2: Electrical power budgets for the proposed Higgs and Electroweak factory colliders, and, for comparison the EIC, based on invited contributions to the special session at eeFACT'22 [4]. NI: Not Included; NE: Not Estimated; -: Not Existing. [‡]ILC parameters correspond to the luminosity upgrade. The total ILC power includes 4 MW margin, the one for HELEN 3.3 MW (here as part of the general services). *For HELEN, the "detector" number refers to the power required for the beam delivery system, machine detector interface, interaction region, and beam dumps, the "injector magnets" number to damping ring with wigglers. [†]For RELIC, the 2.5 GeV damping rings and transfer lines would use permanent magnets.

Proposal	CEPC		PC FCC-ee		CERC		C^3	HELEN	CLIC	ILC [‡]	RE	RELIC	
Beam energy [GeV]	120	180	120	182.5	120	182.5	125	125	190	125	120	182.5	10 or 18
Average beam current [mA]	16.7	5.5	26.7	5	2.47	0.9	0.016	0.021	0.015	0.04	38	39	0.23-2.5
Total SR power [MW]	60	100	100	100	30	30	0	3.6	2.87	7.1	0	0	9
Collider cryo [MW]	12.74	20.5	17	50	18.8	28.8	60	14.43	_	18.7	28	43	12
Collider RF [MW]	103.8	173.0	146	146	57.8	61.8	20	24.80	26.2	42.8	57.8	61.8	13
Collider magnets [MW]	52.58	119.1	39	89	13.9	32	20	10.40	19.5	9.5	2	3	25
Cooling & ventil. [MW]	39.13	60.3	36	40	NE	NE	15	10.50	18.5	15.7	NE	NE	5
General services [MW]	19.84	19.8	36	36	NE	NE	20	6.00	5.3	8.6	NE	NE	4
Injector cryo [MW]	0.64	0.6	1	1	NE	NE	6	1.96	0	2.8	NE	NE	0
Injector RF [MW]	1.44	1.4	2	2	NE	NE	5	0*	14.5	17.1	192	196	5
Injector magnets [MW]	7.45	16.8	2	4	NE	NE	4	13.07*	6.2	10.1	0†	0†	5
Pre-injector [MW]	17.685	17.7	10	10	NE	NE	-	13.37	-	-	NE	NE	10
Detector [MW]	4	4.0	8	8	NE	NE	NE	15.97*	2	5.7	NE	NE	NI
Data center [MW]	NI	NI	4	4	NE	NE	NE	NI	NI	2.7	NE	NE	NI
Total power [MW]	259.3	433.3	301	390	89	122	150	110.5	107	138	315	341	79
Lum/IP [10 ³⁴ cm ⁻² s ⁻¹]	5.0	0.8	7.7	1.3	78	28	1.3	1.35	2.3	2.7	200	200	1.
Number of IPs	2	2	4 (2)	4(2)	1	1	1	1	1	1	2	2	1(2)
Tot. integr. lum./yr [1/fb/yr]	1300	217.1	4000	670	10000	3600	210	390.7	276	430	79600	79000	145
5 5 5 5 5			(2300)	(340)			100000000		177230273	1357117	10.530,0000		100000
Eff. physics time / yr [10 ⁷ s]	1.3	1.3	1.24	1.24	1.3	1.3	1.6	2.89	1.2	1.6	2	2	1.45
Energy cons./yr [TWh]	0.9	1.6	1.51	1.95	0.34	0.47	0.67	0.89	0.6	0.82	2	2.2	0.32

	ILC	250	ILC 500	CLIC 380
	baseline	upgrade		
Power (MW)	111	138	164	107
Electricity (TWh/y)	0.66	0.82	0.97	0.6
CO2 at CERN (kton/y)	8	10	12	7

Power and Energy

Energy Consumption beyond a Higgs factory

To set a scale, 100 MW with the running scenario on the right this corresponds to ~0.6 TWh annually

CERN is currently consuming 1.2 – 1.3 TWh annually

Includes studies of overall designs optimisation to reduce power, SRF cavities (grad,Q), cryo efficiency, RF power system (klystrons, modulators, components), RF to beam efficiencies, permanent magnets, operation when power is abundant, heat recovery, nanobeam and more.

Recent overview for linear colliders (LINK)

Running on renewables and when electricity is cheap

Victor Glaim CC-BY-SA-4.0

Two studies in 2017 for CERN / CLIC (Fraunhofer institute):

- Supply the annual electricity demand of the CLIC-380 by installing local wind and PV generators (this could be e.g. achieved by 330 MW-peak PV and 220 MW-peak wind generators) at a cost of slightly more than 10% of the CLIC 380 GeV cost.
 - Study done for 200 MW, in reality only ~110 MW are needed
- Self-sufficiency during all times can not be reached but 54% of the time
- Can one run an accelerator as CLIC in a mode where one turn "on" and "off" depending prices (fluctuating with weather, demand, availability etc) ? **Demand side flexibility***.
- Specify transition times (relatively fast for a LC) and the annual luminosity goal
- Significant savings but the largest saving is the obvious one, not running in the winter.
- Flexibility to adjust the power demand is expected to become increasingly important and in demand by energy companies.
- Future availability of affordable 100MWh-size batteries will improve prospects
- More information (<u>link</u>)

Prospects to run fully on renewables are good Operational flexibility of linear accelerators is an advantage Less energy is always better

Heat recovery:

Already implemented in point 8 for LHC Another approach to increase sustainability Side

Introduction to Demand

Greenhouse Gas Emissions over the Full Lifecycle

Consider construction, operation, and upgrades

CO₂ of Accelerator Projects in Perspective

How does an accelerator compare to other human activities

- CO2 emissions of accelerator projects:
 - 100s of kton CO2 for construction
 100kton is yearly CO2 emission of CERN
 - Civil construction: 250 kton
 - Yearly operation in 2040 (est): 7-10 kton (at CERN)

A linear collider facility has a sizeable CO2 impact, dominated by civil construction

Shorter tunnel and lower power consumption are strong sustainability arguments

CO2 footprint (kton)	LC 250	CLIC 380	k
Civil construction	266	127 / 290	,0
Accelerator	tbd	tbd	
Yearly operation	10	7	

DESY. KET workshop, DESY 2024 | Linear Colliders | Benno List, 28.11.2024

Conclusions and Outlook.

Conclusions

- A linear collider facility for CERN, based on superconducting ILC technology
- Offers a Higgs factory at at a reasonable cost and time scale, with upgrade options
- Profits from a large international experience and interest good opportunities for in-kind contributions
- Offers a rich long-term physics programme with guaranteed results, and a long-term perspective through future upgrades
 - Including rich opportunities for diverse non-collider experiments and R&D facilities
- Can be expanded for more energy or luminosity, as needs arise and funds are available
- Is a sustainable solution, with respect to embodied carbon from construction and energy usage in operation
- Keeps Europe at the forefront of particle physics

Outlook

LCVision inputs for the EPPSU

- Umbrella document of physics case & upgrade options
- Proposal for Linear Collider Facility at CERN
 - ILC like initial facility adapted to CERN
 - Civil engineering study, based on CLIC design study plus ILC at CERN siting study of TDR
 - Cost estimate based on
 - Updated 2024 ILC costs
 - Translated into CHF and CERN procurement model
 - CERN civil engineering costs

As part of the new Strategy:

- Pursue Linear Collider Facility project at CERN up to decision readiness
- Engineering Design Study for a CERN based project
 - Based on the ILC and CLIC designs and R&D plans
 - Together with the existing ILC, CLIC and wider Linear Collider communities
 - Including a specific siting proposal

Thank you.

Thanks to

Steinar Stapnes, Jenny List, Emilio Nanni, Brian Foster, Erik Adli, Ties Behnke, Shin Michizono, Nobuhiro Terunuma, Phil Burrows, Suzanne Evans, Maxim Titov and many others for their material and support

Contact

Deutsches Elektronen-Benno ListSynchrotron DESYIPP

Benno.List@desy.de

www.desy.de

Contact

Deutsches Elektronen-Synchrotron DESY

www.desy.de

Luminosity and Power

LC physics opportunities - reminder

arXiv:2206.08326

e+e- colliders show very comparable performance for standard Higgs program, despite quite different assumed integrated luminosities => longitudinal beam polarization an important factor for LCs

- several couplings at few-0.1% level: Z, W, g, b, τ
- some more at ~1%: γ, c

ILC Site Selection and Civil Engineering

Kitakami mountains

1 ILC Location

ILC accelerator area : inside the granite rock bodies → inside black curves (left) → in the pink color (right) → possible up to 50 km

→ On-going jobs : Optimal accelerator placement, considering surface environment, land-use and land-acquisition

2 Geological Surveys

- Electric Prospecting (crack)
- Seismic Exploration (stiffness)
- Boring Survey
- Borehole Camera
- Measurement of Initial Stress
 of the Ground

- + less + hard 0 10 20
- ightarrow no issues from previous surveys
- → requiring : additional surveys around access tunnel head and access tunnel inside for detailed designing

Cross secti

Electromagnetic Prospecting

Seismic

Exploration

CLIC 380GeV Layout

Baseline electron polarisation \pm 80%

٦.

ILC250 accelerator facility

8,000 SRF cavities will be used.

The CLIC ESPP update – II

DESY. KET workshop, DESY 2024	Linear Colliders	Benno List,	28.11.2024
-------------------------------	------------------	-------------	------------

Table 1.1: Key	parameters of the G	CLIC energ	gy stages.	\bigwedge
Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of \sqrt{s}	$1 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\rm fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim 60/1.5$	$\sim 40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20

MW

Site length KET workshop, DESY/2024 | Linean Collider 20. Benno List). 28.11.2024

The ILC250 accelerator facility

31

31

40

20.5

CLIC parameters (Snowmass)

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{ imes}10^{34}{ m cm}^{-2}{ m s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of \sqrt{s}	$1{ imes}10^{34}{ m cm}^{-2}{ m s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\rm fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim\!\!60/1.5$	$\sim \! 40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20

 Table 1.1: Key parameters of the CLIC energy stages.

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

Several key plasma acc. challenges:

Multi-staging, emittances, energy spread, stabilities, spin polarisation preservation, efficiencies, rep rate, plasma cell cooling and more

Conventional beam(s) challenges:

Positron production, damping rings, RF linac, beam delivery system

Experimental challenges with asymmetric beams

New concept, aiming for pre-CDR (LINK)

- 500 GeV for electrons with plasma acceleration
- 31 GeV positrons with RF based linac, used also to provide electron drivebeam for the plasma acceleration
- Reach 250 GeV collision energy, luminosity 10³⁴

Asymmetric technologies, energies and bunch charges

Small footprint, lower cost

Energy recovery options, potentially very large luminosities but early stage of development

The updated Priority Work Packages (WP')

LONGOOD (Chin MICHIZONO)

S. Michizono, <u>LCWS 2023</u>

Some recent ILC developments - I

Promoting the technological development of the International Linear Collider: Twenty-eight research institutes participated in the ITN Information Meeting

Topics

2023/11/16

DESY. KET workshop, DESY 2024	Linear Colliders	Benno List,	28. <u>11.200</u>
-------------------------------	------------------	-------------	-------------------

	WPP	1	Cavity production	V		V	V	V			\checkmark	V	V				\checkmark	V	V		V	V		V	V	
SRF	WPP	2	CM design	V				√				V			√	√	√	V	V			V		V	V	
	WPP	3	Crab cavity			√	\checkmark							√					V			√	√		√	\checkmark
	WPP	4	E-source			\checkmark						√							√		\checkmark			√		
	WPP	6	Undulator target				√												√	\checkmark			√			
	WPP	7	Undulator focusing				√												√	\checkmark			√			
Sources	WPP	8	E-driven target	√		√												V	√							
	WPP	9	E-driven focusing	√														√	\checkmark							
	WPP	10	E-driven capture	√															\checkmark					√		
	WPP	11	Target replacement	√																						
	WPP	12	DR System design	√	\checkmark				√	√		√							√				√	√		
	WPP	14	DR Injection/extraction	V					√										\checkmark				√	√		
Nano-beams	WPP	15	Final focus	V			\checkmark		√		\checkmark							√			\checkmark			√		
	WPP	16	Final doublet	V	\checkmark													√								
	WPP	17	Main dump	V			\checkmark					V														

Above: ILC Technology Network (ITN), interest/capability matrix from 28 labs/universities

WPP	1	Cavity production
WPP	2	CM design
WPP	3	Crab cavity
WPP	4	E- source
WPP	6	Undulator target
WPP	7	Undulator focusing
WPP	8	E-driven target
WPP	9	E-driven focusing
WPP	10	E-driven capture
WPP	11	Target replacement
WPP	12	DR System design
WPP	14	DR Injection/extraction
WPP	15	Final focus
WPP	16	Final doublet
XXX P	17	Main dump

European ITN studies are distributed over five main activity areas:

ML related tasks

 SRF and ML elements: Cavities and Cryo Module, Crab-cavities, ML quads and cold BPMs (INFN, CEA, DESY, CERN, IJCLAB, UK, CIEMAT, IFIC)

Sources

Pulsed magnet and wheel/target (Uni.H, DESY, CERN)

Damping Ring including kickers

Low Emittance Rings (UK)

ATF activities, final focus and nanobeams

• ATS and MDI (UK, DESY, IJCLAB, CERN, IFIC)

Implementation

- Dump, CE, Cryo follow up efforts at CERN
- Sustainability, Life Cycle Assessment (CERN, DESY, CEA, UK groups)
- EAJADE started (EU funding) (DESY, UK, CEA, CNRS, IFIC, INFN, UHH, CERN)

Costs

Cost exercises and international reviews:

- ILC TDR 2012-13, 500 GeV primarily (LINK)
- CLIC CDR 2012-13, 3 TeV primarily and 500 GeV (LINK)
- ILC in Japan 2017-18, 250 GeV, reviewed within LCC (LINK)
- CLIC PiP 2018, 380 GeV primarily (LINK)

Updates and reviews underway (e.g. scheduled in December for ILC costs)

For the ESPP – concerning starting with ILC at CERN:

- Updated: ILC in Japan with updated technology results, updated CFS (CE and conv. systems, SCRF) – discussed on slide 10
- CERN implementation: CE costs based on CLIC and other CERN projects, same main linac footprint, change in number of shafts, add larger underground DR, remove drivebeam CE and turn arounds, slightly different BDS dimensions and cavern sizes

Modularity as success concept

- Study by B. Flyvbjerg and D. Gardner identifies modularity as key factor to success of mega projects
 - "What is your lego?"
 - Evidence: Most successful mega project type are solar power plants owing to inherent modularity

250 GEV, 35MV/M

Controls an

- Cryomodules are the central building block of a superconducting accelerator, large fraction of value
 - Get them right, get the project right

DESY. KET workshop, DESY 2024 | Linear Colliders | Benno List, 28.11.2024

"Get a small thing, a basic building block. Combine it with another and another until you have what you need. ... Modularity delivers faster, cheaper and better ... for building at a truly huge scale ... modularity is not just valuable, it's indispensable."

Flyvbjerg, Gardner "How big things get done"

Study: performance of 16000 mega projects according to project type

Operation

- Operation stage very important: Large CO2 emissions from electricity production
- Impact assessment depends on assumptions of future (reduction of) carbon inten of electricity → assumptions still under debate
- CLIC study indicates that 6 17 year of electricity cause as much CO2 as all tunnels/shafts/caverns
 - even at very low carbon intensity in France
- CLIC study in 2020 about running only on renewables (<u>link</u>): Total energy is sufficient, **fluctuations** require grid as buffer
 - \rightarrow modulate operation (demand side flexibility) -> strength of linear accelerators

202

LCWS

Evans,

ഗ

 \rightarrow rapidly falling battery prices change the field,

GWh size storage will be affordable in 2030s

orld-

https://www. CC BY NC S

ESSRI 2022