LINEAR e^+e^- COLLIDER AT CERN

Linear collider at CERN, first at 250 then at 550 GeV

- Possible further upgrades
 - **Replies to ESPP questions**

12/02/2025 - NL ESPP [indico]

🛛 @koppenburg.ch] [pat

Patrick Koppenburg

Nikhef

15/01/2025 - patrick@koppenburg.ch

g Linear e^+e^- collider at CERN

12/02/2025 - NL ESPP [1 / 23]

 e^+e^- CROSS-SECTIONS

HIGGS POTENTIAL

HIGGS COUPLINGS

With $\mathcal{O}(10^6)$ ZH events you can get an absolute measurement of the H coupling. LHC measurements are ratios.

Linear Collider Vision

HIGGS SELF-COUPLING

SNOWMASS HIGGS REPORT

Precision on cubic Higgs coupling:

collider	Indirect- <i>H</i>	HH	combined
HL-LHC	100–200%	50%	50%
ILC_{250}/C_{250}^{3}	49%	-	49%
ILC_{500}/C^3_{550}	38%	20%	20%
FCC-ee	33%	_	33%
FCC-ee (4 IPs)	24%	_	24%
CLIC ₃₈₀	50%	_	50%
CLIC ₁₅₀₀	49%	36%	29%
CLIC ₃₀₀₀	49%	9%	9%
FCC-hh	_	3.4-7.8%	3.4–7.8%
μ (3 TeV)	_	15–30%	15–30%
μ (10 TeV)	_	4%	4%

ILC with a 550 GeV gets to 20% precision.

LC@CERN: With double the luminosity get close to 10%

Patrick Koppenburg

Niklhef

TOP PHYSICS

Top physics:

- Mass
- Decays that are not allowed (in the SM)
- Decays to things that do not exist (in the SM)
- Other deviations, like *CPV*

Sounds a bit like LHCb, but at the top

[Moorgart-Pick et al., Phys. Rept. 460 (2008) 131, arXiv:hep-ph/0507011]

BEAM POLARISATION AT e^+e^- COLLIDERS

Linear colliders can have polarised beams (typically 80%). which improves sensitivity compared to unpolarised beams, due to chirality in SM and (likely) BSM.

ECFA HIGGS/EW/TOP FACTORY REPORT

350-page report due March 31. Draft on [CDS (open to $\mathcal{O}(10^3)$ participants)]. DETECTOR DEVELOPMENT: Detector concepts (brief) COMMON DEVELOPMENTS: was main aim of the study HIGGS: Update of "Jorgen-Wouter" report [de Blas et al., arXiv:1905.03764] EW AND QCD: W mass, two-fermion physics, Z, WW differential. fragmentation... TOP: $t\bar{t}$ threshold, t couplings, exotic decays SMEFT: fits of EW/H/TopBSM: Exotic scalars, LLPs, new gauge bosons, HNLs, SUSY, DM FLAVOUR: V_{ch} and V_{cs} from W, V_{ts} from top

Wachten op Godot van Samuel Beckett

ILC

Nik hef Patrick Koppenburg

Linear e^+e^- collider at CERN

12/02/2025 - NL ESPP [10 / 23]

LCF: LC FACILITY AT CERN

Linear Collider Vision

9F ina

Much more than shipping ILC to CERN

> Many upgrade options, depending on physics needs and technology readiness.

HALHE

- 000

ilf

12/02/2025 - NL ESPP [11 / 23]

Patrick Koppenburg

LOCATION! LOCATION! LOCATION!

ILC Japan Typical Tunnel Cross Section

Arched 9.5m span. Tohoku region, Japan. (250GeV)

ILC Japan Cross section Implemented at CERN

12/02/2025 - NL ESPP [12 / 23]

5.6m Internal Diameter

Linear Collider Vision

1. LCF@CERN PARAMETERS

● The main stages of the project and the key scientific goals of each 250 GEV: *H* studies in *ZH* → Couplings to 2nd generation, Higgs width 550 GEV: *H* self-coupling in *ZHH*, Top physics

- Whether the ordering of stages is fixed or whether there is flexibility
 - → Energy depends on installed cavities, so natural to increase $250 \rightarrow 550$.
 - But one could start at 550 (\$!) and go down if needed. SCRF are flexible.
- For each stage, the main technical parameters
 - 250 GEV: 5 years, $2 ab^{-1}$ 550 GEV: 11 years, $4 ab^{-1}$ (short excursions to $t\bar{t}$ threshold)
- The number of independent experimental activities and the number of scientists expected to be engaged in each.
 - ✓ Two detectors on different IPs → Two collaborations
 - Beam dump possibilities, alike LUXE, SHiP

Linear Collider Vision

1. LCF@CERN PARAMETERS

The main stages of the project and the key scientific goals of each 250 GEV: *H* studies in *ZH* → Couplings to 2nd generation, Higgs width 550 GEV: *H* self-coupling in *ZHH*, Top physics

Plexible upgrade possibilities
CLIC OR C³ and get to 2 or 3 TeV
ERLC Energy recovery to increase the luminosity 100×
HALHF Will plasma be ready? → 10 TeV

It is important to be **flexible** as we do not know what will be found at 250-500 GeV, nor which technologies will be mature.

LCF@CERN: LENGTH OPTIONS

Linear Collider Vision

	ILC-like	Upgrade	Upgrade 2	High- <i>E</i>	
Setup		SCRF		CLIC	C ³
Gradient	35 MV/m	50 MV/m		100 MV/m	120 MV/m
Tunnel	20.5 km				
Energy	250 GeV	380 GeV	550 GeV	1 TeV	1–2 TeV
Tunnel	27 km				
Energy	ightarrow 380 GeV	550 GeV	700 GeV	1.5 TeV	1.5–2.5 TeV
Tunnel	33.5 km				
Energy	250 GeV	550 GeV	1 TeV		
Maximum	550 GeV	700 GeV	1 TeV	\geq 3 TeV	\geq 3 TeV

Baseline to be defined:

• Cheapest option is just this

LCF@CERN: LENGTH OPTIONS

Linear Collider Vision

	ILC-like	Upgrade	Upgrade 2	High- <i>E</i>	
Setup		SCRF		CLIC	C ³
Gradient	35 MV/m	50 MV/m		100 MV/m	120 MV/m
Tunnel	20.5 km				
Energy	250 GeV	380 GeV	550 GeV	1 TeV	1–2 TeV
Tunnel	27 km				
Energy	ightarrow 380 GeV	550 GeV	700 GeV	1.5 TeV	1.5–2.5 TeV
Tunnel	33.5 km				
Energy	250 GeV	550 GeV	1 TeV		
Maximum	550 GeV	700 GeV	1 TeV	\geq 3 TeV	\geq 3 TeV

Baseline to be defined:

• Baseline likely that: 33 km but run at 250–550 GeV.

LCF@CERN: LUMINOSITY

Patrick Koppenburg

Linear Collider Vision

12/02/2025 - NL ESPP [16 / 23]

Linear Collider Vision

2. LCF@CERN TIMELINE

- The technically limited timeline for construction of each stage + scenario timelines
 - → The ILC TDR dates from 2013 [TDR]. Timeline dominated by HL-LHC/budget, as FCC.
 - The local feasibility needs work. Aim to be ready for approval in < 5 years.
- The anticipated operational (running) time at each stage, and the expected operational duty cycle
 - → There is flexibility
 - Could start at 550 GeV if CEPC covers region up to 350 GeV

Patrick Koppenburg Linear e^+e^- collider at CERN

Niklhe

3. LCF@CERN RESOURCES

Linear Collider Vision

- The capital cost of each stage in 2024 CHF
 - ➔ Being worked on.

O Commentary on the basis-of-estimate of the resource requirements

- ✓ Solid estimates for the Japanese proposal, converted to 2024 numbers: 6.8G\$+2.2G\$ (civil)
- Expect about 10% lower numbers in CHF.
- → Being converted to CERN environment
 - ✓ Lab already there
 - ✗ different geology...

"For prices in Switzerland, we do not give out numbers yet, but it is a fair statement to say that the exchange rate of 1 US\$ = [0.9] CHF suggests that the expected price in swiss francs will be lower than in [\$] by about 10%, but that detailed studies for the CERN site have not been concluded."

4. LCF@CERN SUSTAINABILITY

Linear Collider Vision

- The peak (MW) and integrated (TWh) energy consumption during operation of each stage
 - → 200–220 MW, which gives 0.7 TWh/y
 - ILC lumi was capped by requirements on wall power use

Linear Collider Vision

5. LCF@CERN KEY TECHNOLOGY

- The key technologies needed for delivery that are still under development in 2024, and the targeted performance parameters of each development
 - → All good (positron source essentially needs an engineer)

Nikhef

Linear Collider Vision

6. LCF@CERN DEPENDENCIES

- Whether a specific host site is foreseen, or whether options are available
 - → Topic of this talk: CERN. But no requirement on CERN's accelerator complex.
- The dependencies on existing or required infrastructure
- The technical effects of project execution on the operations of existing infrastructures at the host site

7. LCF@CERN STATUS

Linear Collider Vision

- A concise description of the current design / R&D / simulation activities leading to the project, and the community pursuing these
 - → There is a large linear collider community. LCF@CERN is just starting. Already 77 institutes involved (incl Nikhef) [sign]
 - Workshop at CERN in January with 150 people (60 in room) [indico]
- Any other key technical information points in addition to those captured above, including references to additional public documents addressing the points above.
 - → Workshop slides [indico]

Niklhef

CERN should study the feasibility of a linear e^+e^- collider reaching energies up to 550 GeV to be operated after the LHC.

CERN should support R&D for future potential upgrades of such a collider, while being open to other options as demanded by physics and technological breakthroughs.

Now changing hats:

Long-term sustainability should be a guiding principle for the next large experimental facility and supported by international agreements.

Patrick Koppenburg

Linear e^+e^- collider at CERN

12/02/2025 — NL ESPP [23 / 23]

@ @koppenburg.ch] [patrick.koppenburg@nikhef.nl]

Backup

Patrick Koppenburg

Linear e^+e^- collider at CERN

12/02/2025 - NL ESPP [24 / 23]

ILC and the Accelerator Technology

collider at CERN

Linear e⁺e

compresso

[Michizono 01/2025]

Parameters	Value
Beam Energy	125 + 125 GeV
Luminosity	1.35 / 2.7 x 10 ³⁴ cm ² /s
Beam rep. rate	5 Hz
Pulse duration	0.73 / 0.961 ms
# bunch / pulse	1312 / 2625
Beam Current	5.8 / <mark>8.8</mark> mA
Beam size (y) at FF	7.7 nm
SRF Field gradient	< 31.5 > MV/m (+/-20%) $Q_0 = 1x10^{10}$
#SRF 9-cell cavities (CM)	~ 8,000 (~ 900)

12/02/2025 - NL ESPP [25 / 23]

LOCATION! LOCATION! LOCATION!

12/02/2025 - NL ESPP [26 / 23]

Linear Collider Vision

LOCATION! LOCATION! LOCATION!

ILC Japan Typical Tunnel Cross Section

Arched 9.5m span. Tohoku region, Japan. (250GeV)

ILC Japan Cross section Implemented at CERN

5.6m Internal Diameter

Linear Collider Vision

LOCATION! LOCATION! LOCATION!

Geological Profile

- Ongoing Geographical study to optimise and share common shaft locations between CLIC and ILC.
- CLIC is symmetrical either side of the interaction region.
- ILC is not symmetrical either side of the interaction region.
- Shafts at 4&5 for both studies will be unified.
- It is easier to adapt the CLIC shafts to the ILC design due to the Cryo design constraints of the ILC.

Patrick Koppenburg

Site and Civil Engineering

10.000 12.000

2 000

CERM

Linear e^+e^- collider at CERN

26,000 28,000 30,000 32,000 DCum (m

Linear Collider Vision

LCVISION: DOCUMENTS

LC Vision Documents

Nik[hef

and their relations to other EPPSU inputs

WW physics

With WW pairs one can measure THE W mass $(0.5 \text{ MeV}/c^2 \text{ with a threshold scan}$ $W \rightarrow \ell \nu$ BFs to 10^{-4} CKM MATRIX ELEMENTS notably V_{cb} WW DIFFERENTIAL MEASUREMENTS useful for SMEFT FRAGMENTATION FUNCTIONS relevant for H^0 and top physics

ReLIC — RECYCLING LINEAR COLLIDER

ReLIC — RECYCLING LINEAR COLLIDER

Patrick Koppenburg

Linear e^+e^- collider at CERN

ECFA HIGGS/EW/TOP FACTORY REPORT

350-page report due March 31. Draft on [CDS (open to $\mathcal{O}(10^3)$ participants)]. DETECTOR DEVELOPMENT: Detector concepts (brief) COMMON DEVELOPMENTS: was main aim of the study HIGGS: Update of "Jorgen-Wouter" report [de Blas et al., arXiv:1905.03764] EW AND QCD: W mass, two-fermion physics, Z, WW differential. fragmentation... TOP: $t\bar{t}$ threshold, t couplings, exotic decays SMEFT: fits of EW/H/Top. Tera-Z BSM: Exotic scalars, LLPs, new gauge bosons, HNLs, SUSY, DM FLAVOUR: V_{ch} and V_{cs} from W, V_{ts} from top, V_{ch} from B_c^+ , rare b decays, precision τ physics

LINEAR e^+e^- collider at CERN: My take

- A linear collider can be upgraded step-by-step, depending on available technologies and physics priorities
 - \rightarrow We do not need to, and should not, plan for the next 80 years
- 2 Lower luminosity than FCC below 200 GeV, but larger energy reach.
- → Either way it's a bet on the future

