
LCVision: Scenarios for Construction and Operation

LC Vision Community Event Jan 9, 2025

M. Ishino, <u>J. List</u>, T. Nakada, M. Peskin, R. Pöschl, A. Robson, S. Stapnes

Basic Parameters

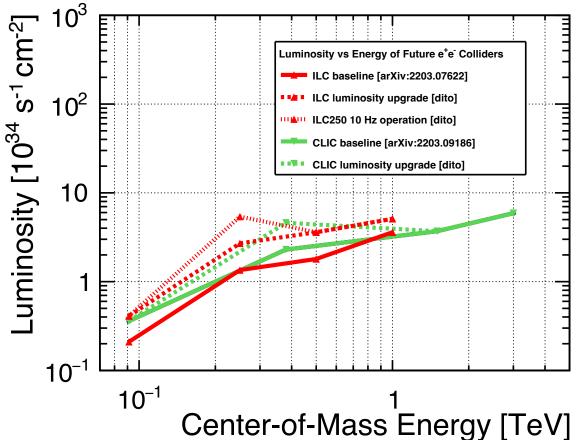
an overview from cruising altitude

- Linear Colliders are stageable in energy and luminosity
 - energy scales with length for given technology => construction cost & land usage
 - Iuminosity scales with power consumption => construction & operation cost
- Pure physics optimisation:
 - build facility for highest energy & highest luminosity
 - run at lower energies for specific measurements if physics program demands (e.g. threshold scans)
- Resources are finite:
 - How to balance scientific ambitions vs realistic resource consumption?
 - All Linear Colliders offer the possibility of step-wise construction aka "staging"
 - LCVision philosophy: prioritize upgrades via advanced technologies over tunnel prolongation and "more of the same"
- Need to define as baseline:
 - initial footprint & civil construction
 - candidates for initial acceleration technology

Physics vs E_{CM} for a polarised e+e- Linear Collider

and minimal integrated luminosity - see yesterday's talks

- · 250 GeV, ~2ab-1:
 - precision Higgs mass and total ZH cross-section
 - Higgs -> invisible (Dark Sector portal)
 - basic ffbar and WW program
 - optional: WW threshold scan
- · Z pole, few billion Z's: EWPOs 10-100x better than today
- · 350 GeV, 200 fb-1:
 - precision top mass from threshold scan
- · 500...600 GeV, 4 ab-1:
 - Higgs self-coupling in ZHH
 - top quark ew couplings
 - top Yukawa coupling incl CP structure
 - improved Higgs, WW and ffbar
 - probe Higgsinos up to ~300 GeV
 - probe Heavy Neutral Leptons up to ~600 GeV

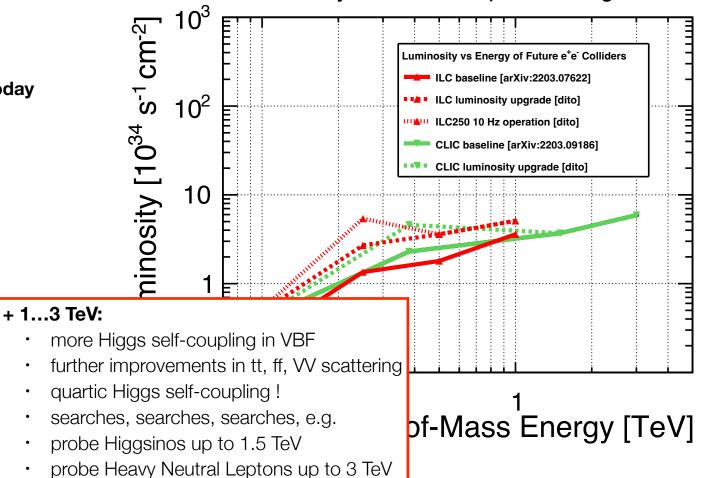

800...1000 GeV, 8 ab-1:

- Higgs self-coupling in VBF
- further improvements in tt, ff, WW,
- probe Higgsinos up to ~500 GeV
- probe Heavy Neutral Leptons up to ~1000 GeV
- searches, searches, searches, ...

Linear Collider Vision

Based on classic ILC/CLIC luminosity assumptions limited by self-allowed power budget

Physics vs E_{CM} for a polarised e+e- Linear Collider


and minimal integrated luminosity - see yesterday's talks

- · 250 GeV, ~2ab-1:
 - precision Higgs mass and total ZH cross-section
 - Higgs -> invisible (Dark Sector portal)
 - basic ffbar and WW program
 - optional: WW threshold scan
- · Z pole, few billion Z's: EWPOs 10-100x better than today
- · 350 GeV, 200 fb-1:
 - precision top mass from threshold scan
- · 500...600 GeV, 4 ab-1:
 - Higgs self-coupling in ZHH
 - top quark ew couplings
 - top Yukawa coupling incl CP structure
 - improved Higgs, WW and ffbar
 - probe Higgsinos up to ~300 GeV
 - probe Heavy Neutral Leptons up to ~600 GeV

800...1000 GeV, 8 ab-1:

- Higgs self-coupling in VBF
- further improvements in tt, ff, WW,
- probe Higgsinos up to ~500 GeV
- probe Heavy Neutral Leptons up to ~1000 GeV
- searches, searches, searches, ...

Based on classic ILC/CLIC luminosity assumptions limited by self-allowed power budget

Physics vs E_{CM} for a polarised e+e- Linear Collider

and minimal integrated luminosity - see yesterday's talks

- 250 GeV, ~2ab-1: •
 - precision Higgs mass and total ZH cross-section
 - Higgs -> invisible (Dark Sector portal)
 - basic ffbar and WW program
 - optional: WW threshold scan
- Z pole, few billion Z's: EWPOs 10-100x better than today
- 350 GeV, 200 fb-1:
 - precision top mass from threshold scan
- 500...600 GeV, 4 ab-1:
 - Higgs self-coupling in ZHH
 - top quark ew couplings
 - top Yukawa coupling incl CP structure
 - improved Higgs, WW and ffbar
 - probe Higgsinos up to ~300 GeV
 - probe Heavy Neutral Leptons up to ~600 GeV

800...1000 GeV, 8 ab-1:

- Higgs self-coupling in VBF
- further improvements in tt, ff, WW,
- probe Higgsinos up to ~500 GeV
- probe Heavy Neutral Loptons up to 1000 Col
- searches,

Linear Collider Vision

New results from HL-LHC might change the priorities anytime

Based on classic ILC/CLIC luminosity assumptions limited by self-allowed power budget

Scenarios | LCVision Community Event | 9 Jan 2025 | Jenny List

Notes from Physics Sessions

On overall presentation aspects

- present energy-ordered improvements for each measurement (rather than group all physics which can be done at one energy stage)
- indicate the potential improvements with more luminosity, higher polarisations
- type of projections: provide "prospects" (from full study / mild extrapolations) and "targets" (in reach with more work) — c.f. Marcel Vos' talk
- include LHC results / HL-LHC projections in comparison plots wherever possible => can those of you who are on ATLAS/CMS help with this?
- provide up to date set of *inputs* for global fits to PPG and other interested colleagues
- don't forget about CP properties of the various Higgs, top and gauge boson couplings

Notes from Physics Sessions

On overall presentation aspects

- present energy-ordered improvements for each measurement (rather than group all physics which can be done at one energy stage)
- indicate the potential improvements with more luminosity, higher polarisations
- type of projections: provide "prospects" (from full study / mild extrapolations) and "targets" (in reach with more work) — c.f. Marcel Vos' talk
- include LHC results / HL-LHC projections in comparison plots wherever possible => can those of you who are on ATLAS/CMS help with this?
- provide up to date set of *inputs* for global fits to PPG and other interested colleagues
- don't forget about CP properties of the various Higgs, top and gauge boson couplings

=> important input for physics writing teams, need to see what can be done in the next few weeks...

Other Aspects

beyond L, E, P

- Strong community wish to re-instantiate a 2nd interaction region:
 - will not double the luminosity
 - but add a lot of flexibility and complementarity to the facility (alternative collider modes, technology R&D for future upgrades,)
 - designs exist for ILC and CLIC
 - need updates and revision, but no fundamental show stopper (was simply eliminated to reduce cost...)
- Plan extra facilities from beginning:
 - Beam-dump experiments
 - Extracted beam experiments (e.g. LUXE/ ELBEX @ Eu.XFEL)
 - R&D facilities for detector and accelerator technology also for later upgrades of the collider itself!
- Foresee upgrades from beginning:
 - Today we do not know yet which long-term R&D approach will turn out to be most suitable
 - Design initial facility to be compatible with basic requirements of various advanced technologies

Other Aspects

beyond L, E, P

- Strong community wish to re-instantiate a 2nd interaction region:
 - will not double the luminosity
 - but add a lot of flexibility and complementarity to the facility (alternative collider modes, technology R&D for future upgrades,)
 - designs exist for ILC and CLIC
 - need updates and revision, but no fundamental show stopper (was simply eliminated to reduce cost...)
- Plan extra facilities from beginning:
 - Beam-dump experiments
 - Extracted beam experiments (e.g. LUXE/ ELBEX @ Eu.XFEL)
 - R&D facilities for detector and accelerator technology also for later upgrades of the collider itself!
- Foresee upgrades from beginning:
 - Today we do not know yet which long-term R&D approach will turn out to be most suitable
 - Design initial facility to be compatible with basic requirements of various advanced technologies

Will hear more details about all these ideas during today's program!

Initial Scenarios given to Expert Teams

as a basis for discussion

- let's assume we start with a Linear Facility, with 2 Beam Delivery Systems (2 IRs), length
 - a) ~20 km (e.g. 250 GeV SCRF or ~800 GeV copper)
 - b) ~30 km (e.g. 550 GeV SCRF or ~1.5 TeV copper)
- what could "your" technology offer as
 - i. decision-ready in < 5 years (e.g. 2-3 year targeted engineering effort after EPPSU adoption in early 2026)?
 - ILC-like SCRF, CLIC-like drive-beam
 - alternative collider modes, beyond-collider facilities?
 - anything else?
 - ii. as upgrade, decision-ready after the first years of data-taking of initial facility (e.g. 2045-2050)?
 - requirements on initial facility to make upgrade viable?
 - required R&D and ressources until decision-readiness?

The Linear Collider Facility — Generically

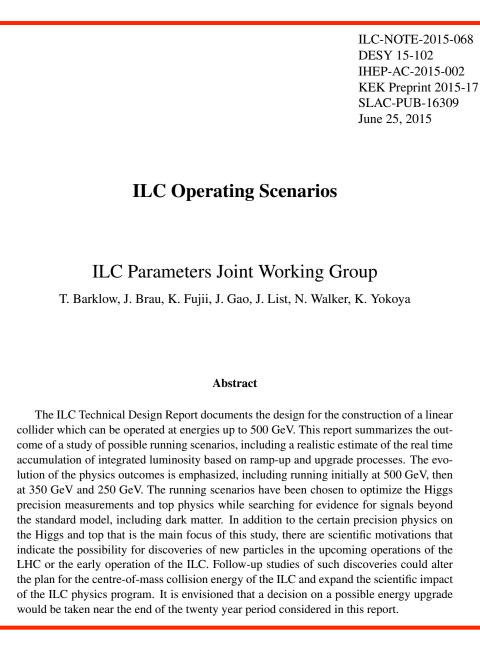
What could be the initial technology?

- For now, the LCF footprint is designed to be compatible with both SCRF and warm (or cool) copper cavities
- The key aspect of LCVision is the need for a Linear Collider at all, able to probe e+e- collisions with polarised beams and beyond the ttbar threshold
- Technology should be chosen at the point in time when the decision is required — according to
 - physics priorities
 - industrial readiness
 - · industrial / societal interest in contributing regions
 - cost, risk, sustainability, ...
- Due to
 - the industrialisation advantage and the many running XFELs
 - · the strong expertise in many regions of the world
 - and the number of well-defined physics targets up to 1 $\ensuremath{\text{TeV}}$

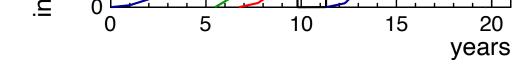
LCVision for now assumes SCRF as baseline for fastest readiness

Now take a look at the range of energy, power and luminosity options — and the resulting running scenarios — taking ILC as example

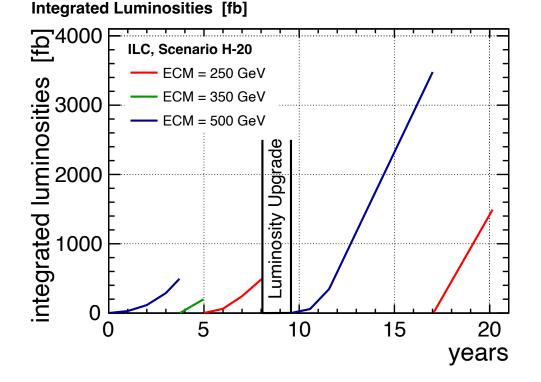
A bit of History


ILC Parameters Joint Working Group

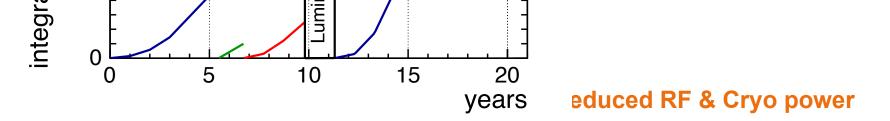
- group of accelerator and particle physics experts
- charged to develop running scenarios for the ILC
- integrated luminosities kept fixed ever since!


	integrated luminosity with $sgn(P(e^{-}), P(e^{+})) =$				
	(-,+)	(+,-)	(-,-)	(+,+)	
\sqrt{s}	[fb ⁻¹]	$[fb^{-1}]$	$[fb^{-1}]$	$[fb^{-1}]$	
250 GeV	1350	450	100	100	
350 GeV	135	45	10	10	
500 GeV	1600	1600	400	400	

	integrated luminosity with $sgn(P(e^{-}), P(e^{+})) =$					
	(-,+)	(+,-)	(-,-)	(+,+)		
\sqrt{s}	$[fb^{-1}]$	$[fb^{-1}]$	$[fb^{-1}]$	$[fb^{-1}]$		
1 TeV	3200	3200	800	800		
90 GeV	40	40	10	10		
160 GeV	340	110	25	25		

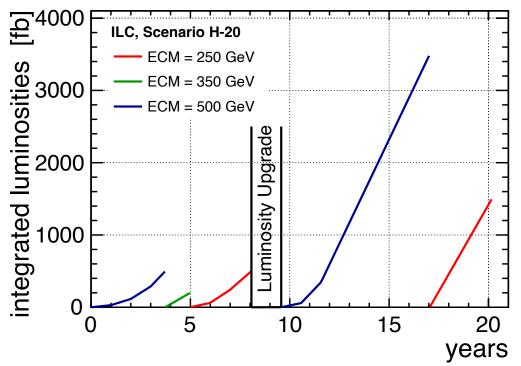

 \mathbf{V} 201 5 Jun d [hep-ex] arXiv:1506.07830v1

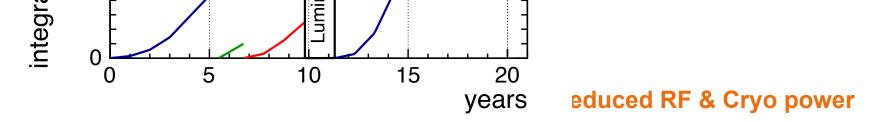
ILC started still at 500 GeV, but initial luminosity had already been halved ("low power" option)



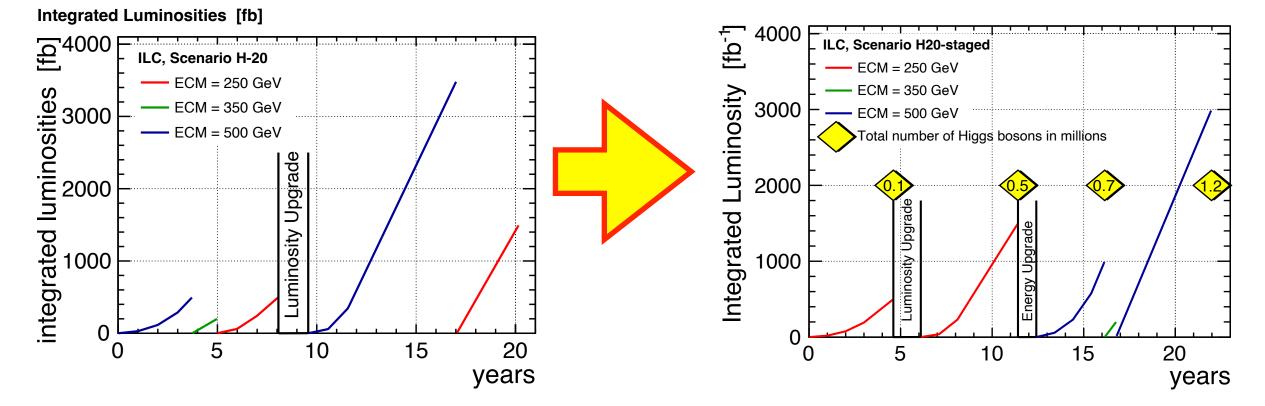
• operation 1.6E7 s / year (more than std CERN assumption)

start at 500 GeV

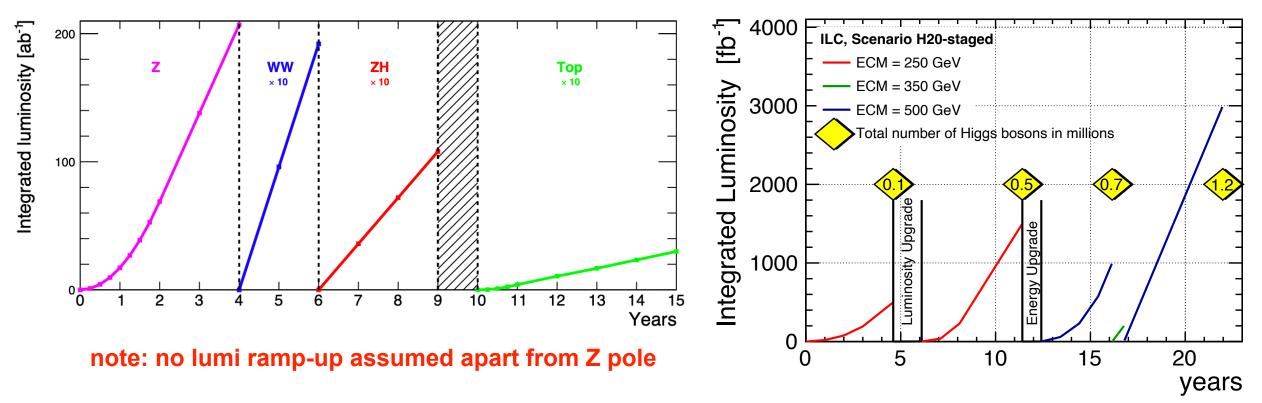

- initial peak lumi = 1.8E34 / s / cm2 (= 1315 bunches / train)
- luminosity upgrade 3.6E34 / s / cm2 (= 2625 bunches / train)
- at lower energies
 - linac is operated at lower gradient
 - use spare RF & cryogenic power to increase train repetition rate to 10 (7) Hz at 250 (350) GeV
- assume slow ramp-up to peak luminosity
 - 0.1, 0.3, 0.6, 1.0 in years 1-4
 - 0.25, 0.75, 1.0 after first change to 10 Hz
 - 0.1, 0.5, 1.0 after lumi upgrade



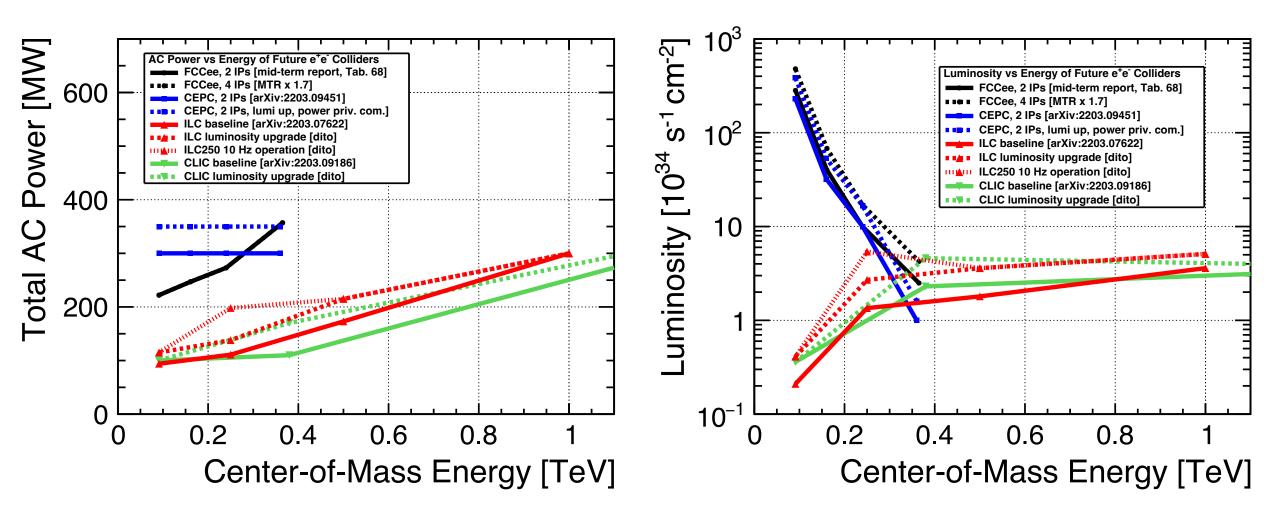
- no 10 Hz operation possible in initial configuration
- initial peak lumi 1.35E34 /s /cm2


Integrated Luminosities [fb]

- no 10 Hz operation possible in initial configuration
- initial peak lumi 1.35E34 /s /cm2



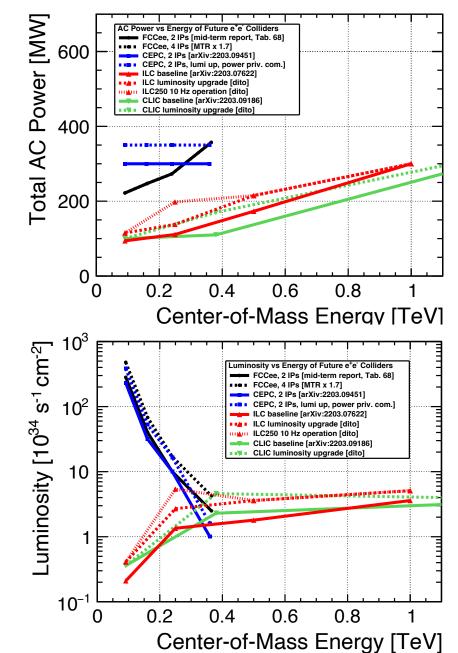
Running Scenarios


Luminosity, Power Consumption and all that

- typical criticism: "low luminosity of LCs requires much more time to do the Higgs program"
 - indeed, in std ILC250 run plan, ZH run takes ~11 years, vs 3 years in FCCee plan
 - however: ILC250 starts with minimal power => let's take a look!

Power and Luminosity

as function of center-of-mass energy

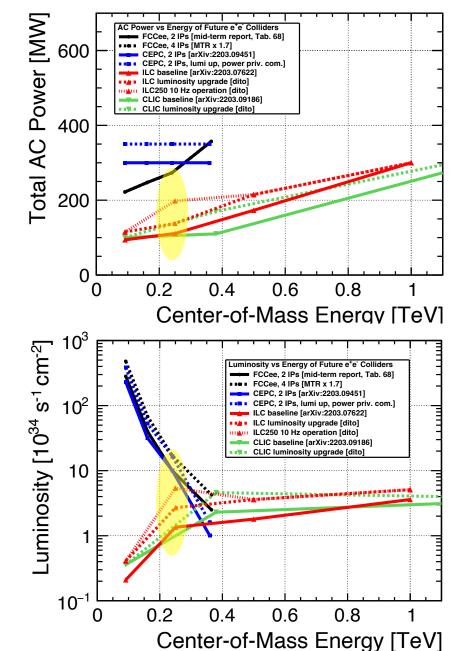


based on the lumi-power relations

- Single-Higgs program at 240/250 GeV:
 - Linear Collider luminosity restricted by *self-assigned* power limit (all lumis in s^-1 cm^-2)
 - 250 GeV ILC lumi, polarised: baseline 1.35E34, 100 MW => 2.7E34 => 5.4E34, 200MW
 - FCCee (mid-term report): 5E34 / IP => 10 with 2IPs, 17E34 with 4 IPs with 273 MW
 - Very naively: for 270 MW, could run ILC at 13 Hz => 7E34 with 270 MV, polarised

=> at comparable power consumption, instantaneous lumi at ILC would be \sim 2.5x less than at FCC with 4 IPs

- Top threshold:
 - ILC lumi-upgrade 1 (2625 bunches / train): lumi larger than FCCee with 2IPs
 - 7Hz running ~= FCC 4IPs but 200 MW vs 350 MW!

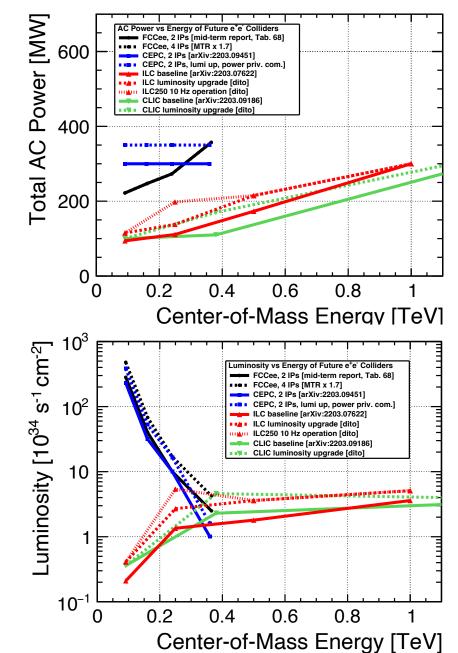


based on the lumi-power relations

- Single-Higgs program at 240/250 GeV:
 - Linear Collider luminosity restricted by *self-assigned* power limit (all lumis in s^-1 cm^-2)
 - 250 GeV ILC lumi, polarised: baseline 1.35E34, 100 MW => 2.7E34 => 5.4E34, 200MW
 - FCCee (mid-term report): 5E34 / IP => 10 with 2IPs, 17E34 with 4 IPs with 273 MW
 - Very naively: for 270 MW, could run ILC at 13 Hz => 7E34 with 270 MV, polarised

=> at comparable power consumption, instantaneous lumi at ILC would be \sim 2.5x less than at FCC with 4 IPs

- Top threshold:
 - ILC lumi-upgrade 1 (2625 bunches / train): lumi larger than FCCee with 2IPs
 - 7Hz running ~= FCC 4IPs but 200 MW vs 350 MW!

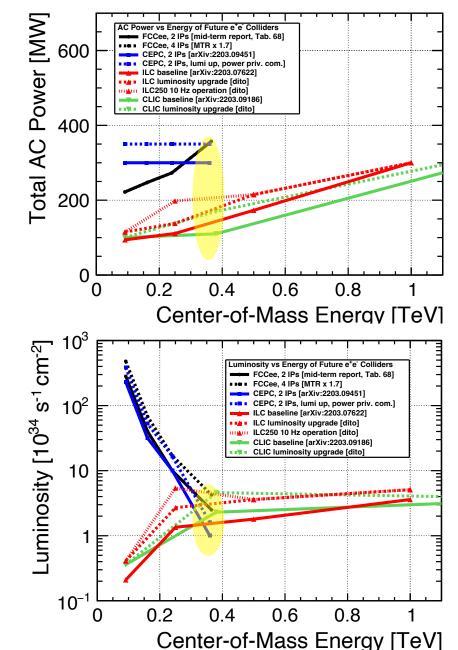


based on the lumi-power relations

- Single-Higgs program at 240/250 GeV:
 - Linear Collider luminosity restricted by *self-assigned* power limit (all lumis in s^-1 cm^-2)
 - 250 GeV ILC lumi, polarised: baseline 1.35E34, 100 MW => 2.7E34 => 5.4E34, 200MW
 - FCCee (mid-term report): 5E34 / IP => 10 with 2IPs, 17E34 with 4 IPs with 273 MW
 - Very naively: for 270 MW, could run ILC at 13 Hz => 7E34 with 270 MV, polarised

=> at comparable power consumption, instantaneous lumi at ILC would be \sim 2.5x less than at FCC with 4 IPs

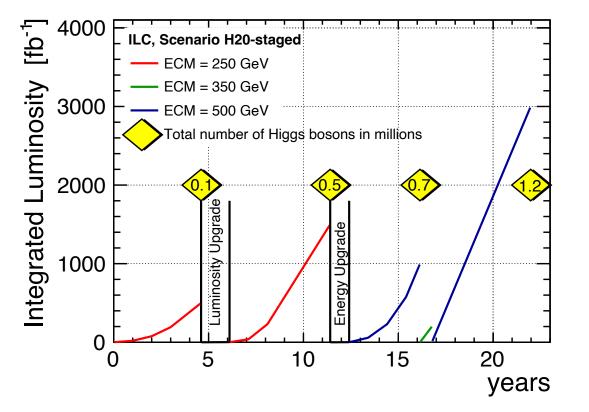
- Top threshold:
 - ILC lumi-upgrade 1 (2625 bunches / train): lumi larger than FCCee with 2IPs
 - 7Hz running ~= FCC 4IPs but 200 MW vs 350 MW!



based on the lumi-power relations

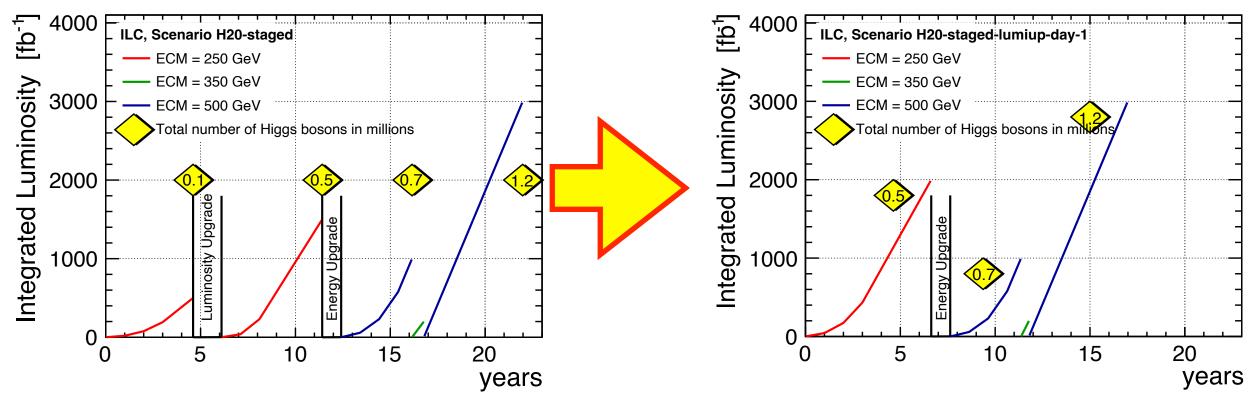
- Single-Higgs program at 240/250 GeV:
 - Linear Collider luminosity restricted by *self-assigned* power limit (all lumis in s^-1 cm^-2)
 - 250 GeV ILC lumi, polarised: baseline 1.35E34, 100 MW => 2.7E34 => 5.4E34, 200MW
 - FCCee (mid-term report): 5E34 / IP => 10 with 2IPs, 17E34 with 4 IPs with 273 MW
 - Very naively: for 270 MW, could run ILC at 13 Hz => 7E34 with 270 MV, polarised

=> at comparable power consumption, instantaneous lumi at ILC would be \sim 2.5x less than at FCC with 4 IPs


- Top threshold:
 - ILC lumi-upgrade 1 (2625 bunches / train): lumi larger than FCCee with 2IPs
 - 7Hz running ~= FCC 4IPs but 200 MW vs 350 MW!

Cranking up ILC power

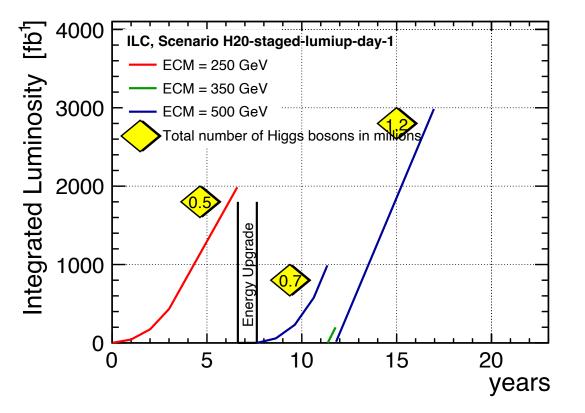
Full number of bunches per train from day-one "lumi upgrade" on previous page



Higgs run down to 6-7 years

Cranking up ILC power

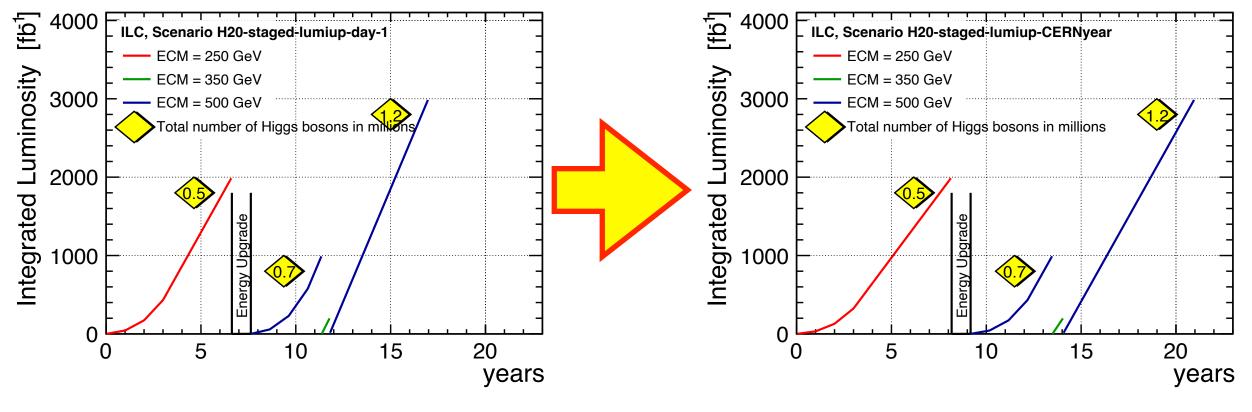
Full number of bunches per train from day-one "lumi upgrade" on previous page



Higgs run down to 6-7 years

Being honest: adjusting to CERN operation year = 1.2x10^7s

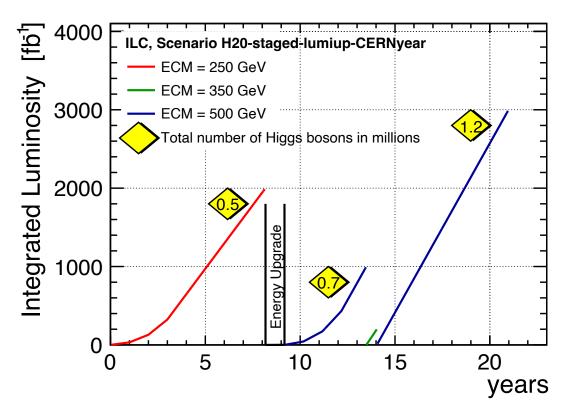
Old ILC assumption used to be 1.6x10^7 s / year



Higgs run ~8 years

Being honest: adjusting to CERN operation year = 1.2x10^7s

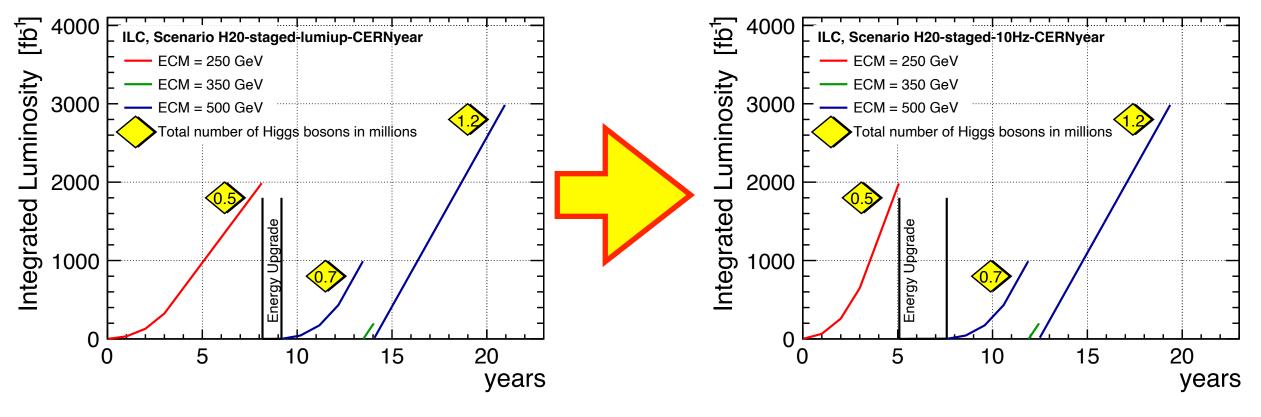
Old ILC assumption used to be 1.6x10^7 s / year



Higgs run ~8 years

200 MW (aka 10 Hz scheme) from day 1

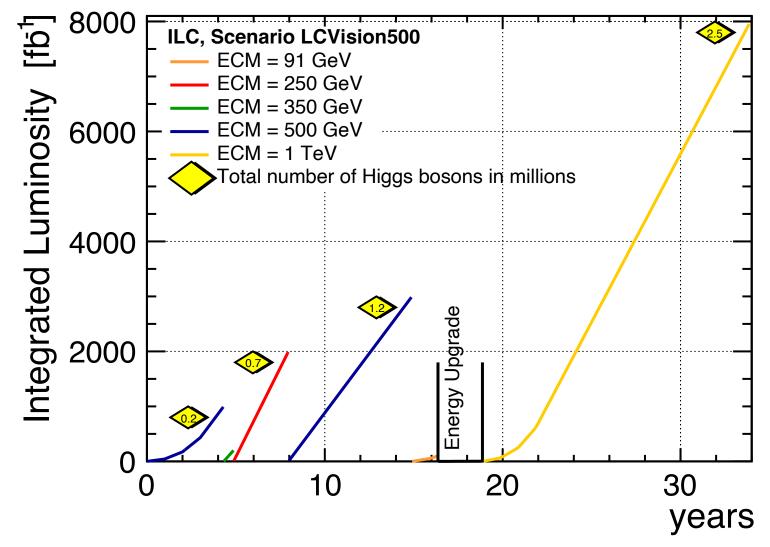
Remember: FCCee uses 270-350 MW



Higgs run 5 years

200 MW (aka 10 Hz scheme) from day 1

Remember: FCCee uses 270-350 MW


Higgs run 5 years

Linear Collider Vision

Dream a little dream...

Starting at 550 GeV

without lumi ramp-up (i.e. like FCCee assumption): Higgs run < 2 years

Linear Collider Vision

Conclusions on Running Scenarios

Some take-away messages

- for physics results, the combination of energy, integrated luminosity and beam polarisation counts
- for construction and operation costs, the total AC power counts
- power and instantaneous luminosity are strongly correlated
- Integrated luminosity depends on peak instantaneous luminosity and assumed operating efficiencies, learning curves etc pp
- the 11years the minimal ILC250 needs to collect the 250 GeV sample is driven by all the cost reductions applied to the orginal design
- If we could build a 550 GeV "2625 bunch" machine right away (still 25% less AC power than FCCee), and use the same operation assumptions as for FCCee, the canonic ILC250 data set could be taken in < 2 years
- Would be awesome if we could find a way to pay for this!!! :)

On the way to a baseline definition

some food for thought & discussion

- 2 IPs => detailed design of BDSes and IRs needs to be revisited and updated
- Tunnel laser straight
 - => favoured for many technologies, not needed but can be done for SCRF
- length of facility (and AC power ~lumi) needs to be balanced against initial cost
- e.g. for ILC-type SCRF:
 - 21 km: 250 GeV
 - 27 km: ~380 GeV or install initially only 250 GeV
 - 33 km: 550 GeV or install initially only 380 or even 250 GeV
- different approaches:
 - What's the cheapest machine to study the Higgs? the top ?
 - What can we get for ~<= 10 Billion ILCU / CHF / ...?
 - What could we get for the cost of FCC-ee ?
- intellectually all valid and interesting questions which we'll try to answer as ingredients to the discussion

Any Questions?