

CryoPrague 2006 - ICEC 21

Baseline Configuration of the Cryogenic System for the International Linear Collider (ILC)

J. Casas-Cubillos, M. Chorowski, S. Claudet, R. Ganni, A. Klebaner, V. Parma, T. Peterson, G. Riddone, C. Rode, B. Rousset, L. Serio, <u>L. Tavian</u>, J. Theilacker, B. Vullierme, R. Van Weelderen & J. Weisend

CERN (CH), WUT (PL), JLAB (USA), Fermilab (USA), CEA (FR) & SLAC (USA)

18 July 2006

Content

Introduction

- » ILC Global Design Effort and timeline
- » Recommended technology
- » ILC layout
- Inventory of superconducting devices
- Distributed heat loads
- Cryogenic layout
 - » Cryoplant inventory
 - » Capacity requirement
 - » Flow-scheme of a Cryo-string
- Studies and developments required
- Conclusion

Overall Layout of the ILC

Tunnel constraints:

- Could follow the earth curvature (no slope) or laser-straight (up to 0.6 % slope)
- Could be shallow or deeply excavated (split of cryoplants to deal with large hydrostatic heads)

ILC Superconducting Equipments

Area systems		Equiments	Temp. [K]
Sourcos	Pre-Accelerator, Booster & Keep-alive	1.3 GHz SRF cryomodules, SC quadrupoles	2
Sources	Undulator	1.3 GHz SRF cryomodules, SC undulator & quadrupoles	4.5 or 2
Damping rings		650 MHz single-cell SRF cavities, SC wigglers	4.5
Ring To Main Linac (RTML)		1.3 GHz SRF cryomodules, SC quadrupoles & Solenoids	2
Main lina	С	1.3 GHz SRF cryomodules, SC quadrupoles	2
Beam delivery		3.9 GHz SRF crab cavities, Final focusing SC doublets	4.5
In total for the first stage: ~ 16400 9-cell TESLA type cavities ~ 2150 SRF cavity cryomodules (all types) CryoPrague 2006 - ~ 1140 superconducting magnets (all types)			ERN, 18 July 2006

Cross-section of Cryomodule

Main Linac Distributed Heat Load [W/m]

Temperature level	40-80 K	5-8 K	2 K
Static heat inleaks	6.7	1.2	0.4
Dynamic heat load*	8.9	0.4	0.7
Total without contingency	15.6	1.6	1.1
Total with contingency**	26.5	3.1	1.8

*: RF load in cavities and RF losses in input- and HOM-couplers, HOM absorbers

**Contingency:	Uncertainty factor on heat inleaks: Overall overcapacity factor:	1.5 1.4

Cryogenic Layout (1st Stage)

Cryo-unit length: 2.1 to 2.3 km

Cryoplant Inventory and Capacity Requirement in 1st Stage [kW]

Curatana	Nb	Temperature level				Equivalent
System		40-80 K	5-8 K	4.5 K	2 K	@ 4.5 K
Main Linac and undulator	10	60	7.0	N/A	4.1	22
Electron RTML and pre- accelerator	1	25	2.9	N/A	1.7	9.2
Positron RTML, booster and keep-alive	1	26	3.0	N/A	1.8	9.5
e- damping ring	4	2.6	N/A	0.6	N/A	1.2
e+ damping ring	4	4.9	N/A	1.1	N/A	2.9
Beam delivery	2	2	N/A	0.6	N/A	0.7

In the first stage:

Total Number of Cryoplants: 22 cryoplants including 12 2-K cryoplants Total capacity: 254 kW equivalent @ 4.5 K including 45 kW @ 2K

9

- S&D for consolidation of the technical choices, reduction of capital and operation costs, increase of the filling factor, improvement of the operation availability and reliability.
- S&D on:
 - » Smaller sub-sectorization to reduce the maintenance unit length,
 - » Thermo-mechanical optimization of the cryomodule,
 - » Mechanical stability of a cryo-string assembly,
 - » Larger cryoplants to increase the cryo-unit length,
 - » Two-phase superfluid helium flow pattern and cooling limitations with respect to slope and string length,
 - » Efficient control strategies to limit the use of electrical heating during transient and steady-state operation.
 - » Sub-cooling heat exchangers with capacity 10 times larger than the present state of the art.

- The baseline configuration of the cryogenic system for the International Linear Collider has been defined in the framework of an international Global Design Effort.
- 22 cryoplants required in the first stage:
 - » Total equivalent installed capacity: 254 kW @ 4.5 K including 45 kW @ 2 K
 - » 10 4.5-K cryoplants and 12 2-K cryoplants distributed over 45 km
 - » Unit Capacity: from 1 to 22 kW equivalent @ 4.5 K
 - from 2 to 4 kW at 2 K
- Reference and technical design and corresponding S&D will proceed until 2010 which will be a crucial year for the ILC project approval with the confluence of:
 - » the end of the ILC technical design,
 - » the consolidation of the LHC physics results,
 - » the end of the CLIC feasibility study.