Overview and aims of planned IN2P3 contributions Meeting motivations & organisation

> Philip Bambade LAL-Orsay

ATF2-IN2P3-KEK kick-off meeting, Annecy, 9-11 October 2006

 $ATF2 = SLAC \leftrightarrow KEK + UK (BDS !) + France & others$ French should be effort well focused given limited resources : (LAL Scientific Council, 09/2005) ATF2 MoU submitted for signature to CNRS ANR grant : 400000 euros in 2007-2010 beam tuning & commissioning Ι ΑΙ · LC impact P.Bambade background calculations (instrumentation development) Complementary LAPP: mechanical support & stabilisation of FD characterisation & impact in beam operation A.Jérémie LLR: background calculations (algorithm, GEANT4) M.Verderi (instrumentation to measure in beam operation) KEK direct partner + UK, DESY, SLAC, CERN, Valencia

Japanese Fiscal year	JFY2005												JFY2006											JFY2007												
		2005										2006										2007									20	08				
Activity	4	5	6	7	8	9	10	11	12	1 1	2	3	4	5	6	7	8	9	10	0 11	12	1	2	3	4	5	6	7	8	9	1() 1	1 1	2 1	2	2
Beam operation	A	TF							ΑT	F		A	TF								ATI	F			ATF							A'	IF		A	TF
Conventional Facilities																plan					pr			prej	eparation floor				utility@ATF2			el sh	i d			
Magnets									24-	Q			test			5		5-Q	Q, Bends (3), 6,8pole:		test			Final do			ublet			test			T
Magnet Support											su	ippo	port							movers (2)			7)								Γ	Ι	Τ	Τ		Т
Alignment											Τ	Ι								Γ									Γ					Т		
Power supplies								рг	oto	type			produ							duc	tion	on					test			Γ	Γ	Τ	Т	Γ	Τ	
QBPM						ł	prot	ototype prodction-1										production												Γ	Γ	T	T	T	T	T
IP-BPM								pro	tot	ype-1	l		test prototyr					type	pe 2 test						production				ı		T	T	T	T	T	
Shintake monitor (BSM)							m	modification to the half wavelength ; i.e. 532nm with precise phase control test at KEK															EK													
Laserwire								R&D at ATF-extraction																						production						
Other instrumentation										Τ		Τ								Г									Γ	Γ	Γ	Τ	Τ	Т	Τ	Т
Feedforward & FONT4/5												R&D and producti																				test at KEK				
Vacuum											Τ	Τ																		Γ	Τ	Τ	Τ	Γ	Τ	
Cable plant										T	T	T																			T	T	T			
Control system																																				
Installation											T	T																T	T	Ť						
Funding Process		F	F	F		-	F	IFY	200	06	Ŧ	+	-		call	for	UK	func	und JFY2007				F					F	F	F	1	FY2	2008	F	Ŧ	

Optics v3.5, 1 July 2006

Beam Instrumentation and Magnets at FF

5 Wire scanners/Laserwires

4 Screen monitors for commissioning, (1 at the ATF-EXT)

5 Stripline BPMS for commissioning

Possible studies & plans @ LAL

Topics : optics/trajectory tuning and correction strategy commissioning background calculations (instrumentation) impact for ILC MDI / BDS

 10 independent parameters α_{x,y} β_{x,y} <xy'> <x'y> <xy'> <x'y> <x'y'>
round emittances → only 2 independent xy parameters
flat emittances 0.001 - 0.01 → <4 xy parameters ?

4 skew quad adjustments needed in β match section

Issues

 capabilities to absorb input mismatches by refitting optics upstream of CCS ? magnet ranges, laser IP sizes, 12 orthogonal controls

 capability to use variable magnifications ("zooming") during commissioning, to start with larger β* and a reoptimised local CCS range ? can it only be done in the initial β match ?

tolerance on injected trajectory stability

 general → possibility to separately detect and correct 1) variations from errors in injection phase-space
2) variations within the FT + CCS

Planned Geant4 developments for ATF2 @ LLR

- Marc Verderi
- Laboratoire Leprince-Ringuet,
- École polytechnique
- Annecy ATF-2 meeting
- October 2006

Introduction

- Goal/desire to compute/estimate background levels in sensitive parts of ATF-2
 - Beam monitor devices for example
- Background estimations can be difficult to realize as main contributions may come from complicated "topologies":
 - (Multi)back-scattering from beam dump
 - Particles in beam halo, interacting with collimators, beam pipe wall, elements,... leading to lost particles traveling in the tunnel, etc...
- Facing difficulties with statistics
 - Large productions performed to get usable statistics in the regions of interest
- Could we estimate the background levels in other ways ?
 - We propose to study the "event biasing" technique
 - This is a variance reduction technique

Event biasing technique examples (existing in Geant4, not exhaustive)

- Leading particle biasing:
 - Useful to estimate a shield thickness, without simulating full showers

- Geometrical biasing:
 - Define geometrical importances
 - Duplicate[kill] tracks accordingly
 - Propagate track weight

- Physics biasing:
 - Biasing secondary production in terms of particle type, momentum distribution, cross-section, etc.

Example of "Biased" events

- Low probability configurations have been enhanced by a "geometrical biasing" technique
 - From left to right, volume importance multiplied each time by 2 when going from slice *i* to slice *i*+1
 - In biased case, workable statistics obtained in the deepest slice

Roadmap

- Delicate techniques to handle !
- Assess the validity and usefulness of such techniques for the case of the background computation in ATF-2
- We will need to:
 - Learn more about these techniques
 - Prototype, on low complexity setups
 - Move to realistic ATF-2 description(s) if results are satisfactory

LAL: ANR \rightarrow 111 keuros 2-year post-doc (or 3 year PhD) starting in 2008 LAPP: ANR \rightarrow 184 keuros 2-year post-doc starting in 2008 equipment (vibration sensors and mechanics) LLR: ANR \rightarrow 105 keuros 2-year post-doc starting in 2007 ANR: very (too) limited travel & consumables funds - AIL : travel & transport \rightarrow 20 keuros in 2006-07 - JSPS/CNRS : travel request \rightarrow 30 keuros in 2007-08 - IN2P3: establish as "project", request additional

support \rightarrow travel + staff + post-doc / PhD funds