

Tango Collaboration Meeting – Trip Report

Claude Saunders
GDE

Tango Control System

- Distributed object control system
 - CORBA-based using IIOP
 - Open source omniORB for C++ binding
 - Open source JacORB for Java binding
 - Derived language support for python, matlab,...
 - Details of CORBA hidden using:
 - Device server
 - Serves up named devices (ie. "bpm", "power supply")
 - » Devices have commands and attributes
 - Configuration initialized from and maintained in MySQL database
 - API (both Java and C++)
 - Access to commands and attributes of devices
 - Asynchronous events

Tools

Tools (all Java)

Pogo

 Rapid development graphical tool for generating code for developing device classes.

Astor

 Graphical tool for supervising device server startup/shutdown/restart across control system.

ATK (Java Swing-based)

Graphical application toolkit for building control screens

Jive

Graphical tool for viewing/modifying configuration database

- Others for archiving, etc...

The Collaboration

- Tango actively used and developed by:
 - ESRF (Andy Goetz & Jens Meyer)
 - Soleil (Majid Ounsy & Alain Buteau)
 - Alba (Jorg Klora)
 - Elettra (Claudio Scafuri)
 - Website: <u>www.esrf.fr/Infrastructure/Computing/tango</u>
 - Merging 4 separate Tango web sites into one
- Meetings bi-annually
 - Approx 40 participants
 - Including "outside observers" who were made to feel very welcome
 - Ie. Dave Gurd, Matthias Clausen, Claude Saunders, Sharon Lackey, ...

Various Observations

- Complex call interfaces not supported by API
 - This is good generic applications can be written that can <u>introspect</u> device attributes
 - Similar to process variables, only namespace is "device.attribute" instead of "PV name"
 - Commands allowed which take one argument, return one argument of a pre-defined set of types (can also be introspected)
- Connection management
 - Device lookup via IOR stored in database
 - Automatic reconnect if device server rebooted
 - Performance issues here being addressed

Various Observations

- Performance
 - 100 us latency to transfer (get) long value
 - Many other aspects to performance, but general impression is that use of CORBA IIOP (as implemented by omniORB and used by Tango) is not a performance problem.
 - Co-located objects avoid IIOP overhead
 Ie. One device calling another within server
- Compile-time and run-time class dependencies
 - Common problem with distributed object architectures
 - Change one class definition, everything must be rebuilt
 - Actively designed to avoid this in Tango
 - Versioned classes
 - Every client doesn't have to know about every class to build and run

Various Observations

- Infrastructure is general-purpose
 - Should a control point be implemented as a command or an attribute?
 - Agreement on representing important control system abstractions?
 - Device classes that implement everything, or...
 - Devices classes for hardware
 - Or develop code library for hardware access?
 - Devices classes for analog i/o point, digital i/o point, etc.
 - Use abstract classes or just share
 - Device classes for BPMs and Power Supplies
 - Device classes for calculated (derived) data
 - Many of these critical patterns not agreed upon yet...
- No device access security at this time

Conclusions

- Tango is modern, approachable distributed object control system
- Still "young" in terms of control system lifetime (first incarnation around year 2000)
 - Motivated and energetic collaborators
- Can serve as full control system, or to provide device abstraction and distributed object capability on top of channel-oriented control system (SCADA, EPICS, ...)