Motivation for fast electron transport

• Observed emission spectrum

$$Y = (1 - R) \frac{\tau_1}{\tau_1 + \tau_{em}} \, odd$$

• Emitted electron polarization

$$P = P_0 \left(1 - \frac{d}{S_0 \tau_s} \right) \frac{\tau_{s_1}}{\tau_{s_1} + \tau_{em}}$$

 α : optical absorption

R: reflection coefficient

 τ_1 : electron lifetime in BBR

 τ_{em} : time of electron emission in vacuum

P₀: initial electron polarization upon excitation with circularly polarized light

- S₀: surface recombination velocity
- τ_s : spin relaxation time in SL
- τ_{S1} : spin relaxation time in BBR

A. Subashiev et. al. SLAC-PUB 10901

Internal Field (kV/cm)

Monte Carlo simulations-transit time

Transit time decreases by an order of magnitude with field

Scattering events decrease-no electron hole scattering when the active region is depleted

Conclusions and current work

- Simulations show an optimum field vs doping design for the cathode
- All scattering events decrease for an optimum field value
- After that field level the transit time does not decrease much