Planned Geant4 developments for ATF2 @ LLR

Marc Verderi
Laboratoire Leprince-Ringuet,
École polytechnique
Annecy ATF-2 meeting
October 2006

Presentation

-I am new to the ATF-2 project

- My actual work will start beginning 2007
- Working on BaBar now
$>$ Member of the Geant4 collaboration
- Kernel, shower parameterization framework, parallel geometry facility,...
> Post-doc position proposed, starting beginning 2007, for two years, to work on this background computation issue.

I ntroduction

> Goal/desire to compute/estimate background levels in sensitive parts of ATF-2

- Beam monitor devices for example
$>$ Background estimations can be difficult to realize as main contributions may come from complicated "topologies":
- (Multi) back-scattering from beam dump
- Particles in beam halo, interacting with collimators, beam pipe wall, elements, . . leading to lost particles traveling in the tunnel, etc...
- Facing difficulties with statistics
\lrcorner Large productions performed to get usable statistics in the regions of interest
> Could we estimate the background levels in other ways?
- We propose to study the "event biasing" technique
- This is a variance reduction technique

Variance reduction?

(my understanding !)

- Assume we want to measure a mean value m of some quantity x and that we have a (say unbiased) estimator for it, E_{7};
- This estimation of m with E_{I} comes together with a variance V_{I}
- Making a variance reduction is to find an other (unbiased preferably) estimator, E_{2}, for m, of smaller variance V_{2}
- Easy on the paper only.
$>$ Properly said, the variance is not "reduced"
- but the quantities of interest are estimated from estimators of smaller variances (than the "brute force" ones).
> In practice, this means "try to put more computing power where needed and less where not needed".
- How this could be?

Event biasing technique examples

(existing in Geant4, not exhaustive)
> Leading particle biasing:

- Useful to estimate a shield thickness, without simulating full showers

Only for hadronic processes in G4
> Geometrical biasing:
」 Define geometrical importances

- Duplicate[kill] tracks accordingly
> Propagate track weight
$\mathrm{I}_{\text {(mportance) }}=\mathbf{1 . 0} \quad \mathrm{I}_{(\text {mportance })}=\mathbf{2 . 0}$

$$
\xrightarrow{\mathbf{W}_{\text {(eight }}=1.0} \frac{\begin{array}{l}
\mathbf{W}_{\text {(eight }}=0.5 \\
\mathbf{W}_{(\text {eight })}=0.5
\end{array}}{\underline{\text { an }}}
$$

P(rob. sunvival)

$$
=0.5
$$

> Physics biasing:

- Biasing secondary production in terms of particle type,
momentum distribution, crosssection, etc.

Example of "Biased" events

- Low probability configurations have been enhanced by a "geometrical biasing" technique
- From left to right, volume importance multiplied each time by 2 when going from slice i to slice $i+1$
- In biased case, workable statistics obtained in the deepest slice

Roadmap

- Delicate techniques to handle !
- Assess the validity and usefulness of such techniques for the case of the background computation in ATF-2
$>$ We will need to:
- Learn more about these techniques
- Prototype, on low complexity setups
- Move to realistic ATF-2 description(s) if results are satisfactory

Help...

- We will need help on:
- BDSIM
$>$ Both from the technical, and physical (beam physics, etc...) point of views
- Computation on the GRID(s)
> Olivier's work
- ATF-2 setup description
> Geometry, materials
$>$ Monitors
> But also beam and beam related features (halo, vacuum, etc. . .)
- We will have vital needs for discussions:
- Understand needs in terms of background estimation
> Background levels, nature, tolerance on estimation...
- Related schedules of these background estimations
- Background monitors and measurements
$>$ Foreseen or to be foreseen
$>$ Commissioning?
- Other ... ?

