Background study at ILC-IR

by H.Fujishima (Saga univ.) and T.Tauchi ATF2 Meeting, Annecy, 9 –11 October 2006

contents

- GLD background in Jupiter (plane solenoid, 14mrad crossing)
 - IR design
 - Q magnet design
 - GLD design
 - Digitization of TPC exact hits
 - Result of simulation
- Anti-DID field
 - Andrei optimized field in Jupiter
- Summary

Interaction Region (IR) Design Beam Pipes etc.

IR region of GLD ; geometris in Jupiter

Q magnet design and location

Ecm=500GeV, Nominal parameter set, 14mrad

Upstream

unit : cm, T/m

magnet	Inner radius	Outer radius	length	z position	Field gradient
QD0	1.0	3.6	220	451	-121.44
SD0/OC0	1.0	2.8	70	681	0
QF1	1.0	4.2	200	881	75.88
SF1/OC1	1.0	28.0	35	1091	0

Note : Sextupole magnetic fields are not installed in Jupiter, yet.

Downstream

unit : cm, T/m

magnet	Inner radius	Outer radius	length	z position	Field gradient
QDEX1A	1.8	4.6	164	600	83.33
QDEX1B	2.4	6.2	164	794	50.00
QFEX2A	3.0	7.2	162	988	40.00

Vertex detector and TPC

VTX : Super double layers

VTX	R [cm]	Half Z [cm]
0	2.0	6.5
1	2.2	6.5
2	3.2	10.0
3	3.4	10.0
4	4.8	10.0
5	5.0	10.0

TPC

R [cm]	45~200	
Half Z [cm]	255*	
No. of layers	200	

*GLC DOD value is 230cm for the fidicial volume.

Digitization of exact hits in TPC ; Jupiter

R direction

Exact hits are digitized at 200 layers.

Z direction

Exact hits are grouped together and digitized in every 50nsec, i.e. 2.5mm for the drfift velocity of 5cm/ μ sec.

Φ direction

No digitization.

Simple digitization with no merging overlapped signals; conservative estimation

Simulation Results ; Jupiter

Ecm=500GeV, Nominal parameter set, 14mrad with no anti-DID

Hits/10bunch

VTX0	VTX1	VTX2	VTX3	VTX4	VTX5	TPC	digi. TPC
9033	9131	2147	1443	320	274	125827	10117

VTX : 1train=2820 bunch

TPC : 160bunch / 50 μ sec

VTX: hits/cm²/train , TPC: hits/50 μ sec

VTX0	VTX1	VTX2	VTX3	VTX4	VTX5	TPC	digi. TPC
15601	14337	1507	953	150	124	_	161872

VTX Hits distribution as a function of Z at each layer

Tolerances in Detectors

Table 1: Tolerances for background in VTX, TPC and CAL.

Sources	: pairs c	disrupted beams/pairs	beam halo
Detector	Hits	Neutrons	Muons
VTX	1×10^4 hits/cm ² /train	$1 \times 10^{10} \text{ n/cm}^2/\text{year}$	-
TPC	$4.92 \times 10^5 \text{ hits}/50 \mu \text{sec}$	$4 \times 10^4 \text{ n}^*/50 \mu \text{sec}$	$1.2 \times 10^3 \mu / 50 \mu \text{sec}$
CAL	$1 \times 10^{-4} \text{ hits/cm}^3/100 \text{nsec}$	_	$0.03 \ \mu/{\rm m}^2/100{\rm nsec}$

* : The neutron conversion efficiency is assumed to be 100% in the TPC.

1 hit in TPC consists of 5 pads(1mmx6mm) x 5 buckets(50nsec) A muon creates 1 pad x 2000 buckets in parallel to the beam line. A neutron creates 10 hits in TPC.

Note : 0.005μ /bunch by two "tunnel fillers" 0.8μ /150bunches

The 9 and 15m long spoilers at 660 and 350m from IP reduces muons by 10⁻⁴

Anti-DID filed GLD Andrei optimization in Jupiter 01

Pairs directed into extraction beam line (%)

Summary

Digitization of TPC hits in Jupiter

Background hits in VTX, TPC with 14mr crossing, no anti-DID

Anti-DID field is under study in order to check a consistency to Andrei's optimized one

Background to be studied including neutrons