
1

Overview of Benchmarking Tools

Tim Barklow
SLAC

Oct 10, 2006

org.lcsim Goals
“Second generation” ILC reconstruction/analysis framework

Builds on hep.lcd framework used since 1999
Full suite of reconstruction and analysis tools

Uses LCIO for IO and as basis for simulation, raw data and
reconstruction event formats

Isolate users from raw LCIO structures
Maintain full interoperability with other LCIO based packages

Detector Independence
Make package independent of detector, geometry assumptions so can
work with any detector
Read properties of detectors at runtime

Written using Java (1.5)
High-performance but simple, easy to learn, OO language
Enables us last 10 years of software developments in the “real world”

Ability to run standalone (command line or batch) or in JAS3 or IDE
such as Netbeans, Eclipse

Available Detector Descriptions
Although detector descriptions can live anywhere we
maintain a CVS repository of detector descriptions

Exported to org.lcsim web site for automatic download
40 detector variants as of July 2006
Many SiD variants, but also some gld, ldc

You are welcome to contribute more

Org.lcsim Reconstruction
Reconstruction package includes:

Physics utilities:
Jet finders, event shape routines
Diagnostic event generator, stdhep reader/translator
Histogramming/Fitting/Plotting (AIDA based)
Event Display
Processor/Driver infrastructure

Fast MC
Track/Cluster smearing

Reconstruction
Cheaters (perfect reconstruction)
Detector Response

CCDSim, Digisim
Clustering Algorithms

Cheater, DirectedTree, NearestNeighbour, Cone
Tracking Finding/Fitting Algorithms

TRF,
Muon Finding, Swiming
Vertex Finding (ZvTop)

Using org.lcsim with JAS3

The org.lcsim can be used standalone, withan IDE,
or inside JAS3. Same code can be used in all
modes, so easy to move back and forth

E.g. develop in IDE and run in JAS3
E.g. develop in JAS3 and run in batch

JAS3 org.lcsim plugin adds:
Example Analysis Code
org.lcim Event browser
Easy viewing of analysis plots
WIRED event display integration

org.lcsim: Examples

org.lcsim: Examples

org.lcsim: Plot Viewing

How hard is it to get started with
org.lcsim?

Works on Linux, MacOSX, Windows
Should take about 15 minutes to install JAS3 and
org.lcsim plugin.

Case Study: SLAC Summer student
2 semesters of Java experience

(no C++, Fortran etc)
Using tutorial on lcsim.org Wiki; installed software,
downloaded data, and got useful results in one day
(and fixed a few errors in the documentation along
the way).
Regular analysis updates have been appearing on
her blog ever since!

Even if you don’t have Java experience you can
get started almost as fast

(the only thing you will miss is the core dumps)
Start here:

https://confluence.slac.stanford.edu/display/ilc/lcsi
m+Getting+Started
Problems? Attend Tuesday afternoon “Simulation”
phone meeting or use discussion forum at
http://forum.linearcollider.org/

https://confluence.slac.stanford.edu/display/ilc/lcsim+Getting+Started
https://confluence.slac.stanford.edu/display/ilc/lcsim+Getting+Started
http://forum.linearcollider.org/
http://suli2006.blogspot.com/

10

SiD Benchmarking Tools
• MC Data sets (stdhep files) of all SM processes at

Ecm=500 GeV assuming nominal ILC machine parameters
– About 50 fb-1 with e- pol=+/- 90% available at

• ftp://ftp-glast.slac.stanford.edu/glast.u32/simdet_output/simd401xx/whizdata.stdhep (-90% e- pol)
• ftp://ftp-glast.slac.stanford.edu/glast.u32/simdet_output/simd402xx/whizdata.stdhep (+90% e- pol)

– 1 ab-1 on SLAC mass storage with all initial e+,e- polarization
states

• Many Monte Carlos (Pythia, Whizard) for producing
additional stdhep files

• Fast MC which takes stdhep files as input and outputs the
same kind of reconstructed particle LCIO objects that full
event reconstruction software produces (LCIO bindings
exist for C++, JAVA, FORTRAN). For old SIMDET
users there exists software to transfer reconstructed particle
LCIO data to SIMDET common blocks.

11

Fast MC Detector Simulation (I)

• In the context of SiD benchmarking the Fast Monte Carlo
should be considered a Fast Physics Object Monte Carlo.
It emulates the bottom line performance of the event
reconstruction software in producing the electron, muon,
charged hadron, photon and neutral hadron physics objects.

• Status of Fast MC used by SiD:
– Tracker simulation uses parameterized covariance matrices based

on tracker geometry and material
– Electron and muon id given by min energy + overall efficiency
– Photon and neutral hadron energies & angles smeared using

single particle EM & hadronic energy & angle resolutions.
Photons and neutral hadrons also have min energy and overall
efficiency within detector volume.

12

Fast MC Detector Simulation (II)

• Fast MC with nominal single particle calorimeter
response gives 17%/sqrt(E) jet energy resolution.
This can be tuned to any value by varying the
single particle EM & hadronic calorimeter energy
resolutions and by replacing charged particle
tracker momentum with calorimeter energy a
certain fraction of the time.

• Will improve the parameterization of calorimeter
response as we learn more from the particle flow
algorithm studies.

13

I find wγ=28%; wh0=10%

14() /jet rec true trueE E E EΔ = −

e e uu+ − → 500 GeVs =

0.18

0.50 0.08

em

em em

had

had had

E
E E
E

E E

Δ
=

Δ
= +

0.18

0.50

em

em em

had

had had

E
E E
E

E E

Δ
=

Δ
=

 is adjusted
 for neutrinos and
particles outside
detector acceptance

trueE

15

2 2 2 2

Drop constant term in single particle resolution for now. Assume
negligible contribution from charged particles to
jet energy resolution and write

where 0

(1 (1)) (1)jet h h jet jetr A w E r A w E c

c

Eγ γσ λ λ+ − + + =

=

=

.3,0.4,0.5,0.6
 hadronic resolution degradation fraction

(1 to only degrade hadronic resolution
 0 to only degrade em resolution)

0.18 0.50 0.28 0.10
Given a desired jet energy resolutio

h h

r
r
r
A A w wγ γ

=
=
=
= = = =

2 2 2

2 2

n the parameter is given by

(

1)

 h h

h h

c
c A w A w

r A w rA w
γ γ

γ γ

λ

λ

− −
=

− +

16

 500 GeVs =

() /jet rec true trueE E E EΔ = − () /jet rec true trueE E E EΔ = −

0.3c =

0.5c =

0.4c =

0.6c =

e e uu+ − →

1.0
(only degrade
had resolution)

r =

call this the
"non-Gaussian
 parameterization"

17

 500 GeVs =

() /jet rec true trueE E E EΔ = − () /jet rec true trueE E E EΔ = −

0.3c =

0.5c =

0.4c =

0.6c =

e e uu+ − →

1.0
but use calor E
for all chg had
=> 0.71h

r

w

=

=

call this the
"Gaussian
 parameterization"

18

Monte Carlo Production
• WHIZARD Monte Carlo is used to generate all

0,2,4,6-fermion and t quark dominated 8-fermion
processes.

• 1 ab-1 @ 0.5 TeV & 2 ab-1 @ 1.0 TeV using
ILC & NLC params respectively have been
generated so far.

• 100% electron and positron polarization is
assumed in all event generation. Arbitrary
electron, positron polarization is simulated by
properly combining data sets.

• Fully fragmented MC data sets are produced.
PYTHIA is used for final state QED & QCD
parton showering, fragmentation, particle decay.

19

20

There are currently 14 MC production groups:
• 0-2-4-fermion
• 6-fermion/ddi-udj-duk
• 6-fermion/eminus-gamma
• 6-fermion/gamma-eplus
• 6-fermion/gamma-gamma
• 6-fermion/uui-udj-duk
• 6-fermion/zzz_1
• 6-fermion/zzz_2
• 8-fermion/
• bench-point-5
• ffh
• ffhh
• tesla_bosons
• tth

The production group directories are located in
/afs/slac/g/nld/whizard/xxxx

where xxxx=0-2-4-fermion e.g.
(xxxx will stand for a production group from here on)

21

For each Production Group There are 5 Steps
Needed to Produce MC Data Sets: (corresponding

shell script is shown in italics)
1. Generate Executable*

/afs/slac/g/nld/fa/whizard-1.50/remake_process_class
2. Submit MC Integration Jobs

/afs/slac/g/nld/whizard/ILC/multiple_whiz_ini
3. Repair MC Integration Jobs

/afs/slac/g/nld/whizard/ILC/multiple_whiz_ini_cleanup
4. Submit MC Event Generation Jobs

/afs/slac/g/nld/whizard/ILC/multiple_whiz_run
5. Repair MC Event Generation Jobs

/afs/slac/g/nld/whizard/ILC/multiple_whiz_run_repair

*Event generation at Ecm=500 GeV used an older whizard version
/nfs/slac/g/lcd/mc/prj/sw/dist/whizard/v1r4p0/whizard-v1r4p0/remake_process_class

22

Data Analysis
• Hundreds of stdhep files are produced with 100% initial state polarization. For

data analysis a subset of these files have to be combined in the proper proportion
according to the processes to be analyzed and the desired initial state
polarization.

• Software has been written to read out stdhep files according to user-specified
processes and initial state polarization using the SLAC mstore mass storage
facility and the SLAC LINUX batch system. The Makefile for an executable
that uses this software can be found at
~timb/grace/six_fermion/a6f/analysis/lcio/Makefile

• Examples of analysis job output can be found at
/afs/slac/g/nld/fa/lcio_physics_analysis/

• When running over all SM processes 78 batch jobs are submitted
simultaneously. Template input files for the 78 batch jobs can be found at
~timb/grace/six_fermion/a6f/analysis/lcio/whizdata_sm_xx.in ,xx=01,02,...,78
The script that submits the 78 batch jobs is
/afs/slac/g/nld/whizard/ILC/multiple_lcio_ini
The 78 process classes are described in
http://www.slac.stanford.edu/~timb/ilc_2ab_mc_data_set/process_classes.pdf

23

24

Access to 1 ab-1 Standard Model
Monte Carlo Data Sets

• Stdhep files are on SLAC MSTORE Mass Storage
• We have tried in the past to put a subset of this

data on permament disk; we now believe that for
SiD Benchmarking studies it is better to have
users of this data obtain SLAC computing
accounts. We will post info on obtaining SLAC
accounts on the Benchmarking web site.

• We will endeavor to improve the user-friendliness
of the software that reads out the mstore stdhep
files according to user-specified processes and
initial state polarization

25

Appendix:
WHIZARD Event Generation

Details

26

remake_process_class copies the file
xxxx/whizard.prc to WHIZARD’s conf

directory, does ‘make prg’, and then copies the
results of the make to xxxx/results.

1. Generate Executable

27

2. Submit MC Integration Jobs

multiple_whiz_ini loops through the processes in
xxxx/results/whizard.prc and submits 4 batch jobs for each
process (1 job for each initial state e+e− helicity combination).

For each job a directory /afs/slac/g/nld/fa/mmmm/whizyyyyy
is created where mmmm is the center-of-mass energy in GeV and

yyyyy is a unique 5-digit job number.

multiple_whiz_ini uses the file
xxxx/results/multiple_cardswhiz_in
to build the batch job’s whizard.in file

multiple_whiz_ini uses the file
/afs/slac/g/nld/whizard/ILC/iniwhiz

to build the batch job’s executable script.

28

3. Repair MC Integration Jobs

multiple_whiz_ini_cleanup loops through the job output in the
directories /afs/slac/g/nld/fa/mmmm/whizttttt

through /afs/slac/g/nld/fa/mmmm/whizyyyyy and
verifies that the integration was completed successfully. Here
mmmm, ttttt, yyyyy are input arguments to the script.

If the integration failed then multiple_whiz_ini_cleanup resubmits
the job. WHIZARD saves intermediate integration results, so the

new job essentially picks up where the old one left off.

29

4. Submit MC Event Generation Jobs
multiple_whiz_run loops through the MC integration job output directories

/afs/slac/g/nld/fa/mmmm/whizttttt through
/afs/slac/g/nld/fa/mmmm/whizyyyyy and submits a run job for every

MC integration job which had a cross-section above some minimum value.

For each run job a directory
/afs/slac/g/nld/fa/mmmm/run_output/wkkkkk/run_01 is created

where mmmm is the center-of-mass energy in GeV and kkkkk is the 5-digit MC
integration job number.

multiple_whiz_run copies most of the files in the directory
/afs/slac/g/nld/fa/mmmm/whizkkkkk into the directory

/afs/slac/g/nld/fa/mmmm/run_output/wkkkkk/run_01 .
Parameters specific to event generation are added to the whizard.in file before it
is copied to /afs/slac/g/nld/fa/mmmm/run_output/wkkkkk/run_01.

multiple_whiz_run uses the file
/afs/slac/g/nld/whizard/ILC/runwhiz

to build the batch job’s executable script.

30

5. Repair Event Generation Jobs

multiple_whiz_run_repair loops through the MC run job output directories
/afs/slac/g/nld/fa/mmmm/run_output/wttttt/run_01 through

/afs/slac/g/nld/fa/mmmm/run_output/wyyyyy/run_01 and verifies
that the jobs completed successfully. If the job failed multiple_whiz_run_repair

resubmits the job. If the job completed successfully but additional runs are required it
will submit new run jobs after creating directories of the form

nfs/slac/g/lcd/mc/mmmm/run_output/wkkkkk/run_02
nfs/slac/g/lcd/mc/mmmm/run_output/wkkkkk/run_03

.

.

.
nfs/slac/g/lcd/mc/mmmm/run_output/wkkkkk/run_nn

	Overview of Benchmarking Tools
	org.lcsim Goals
	Available Detector Descriptions
	Org.lcsim Reconstruction
	Using org.lcsim with JAS3
	org.lcsim: Examples
	org.lcsim: Examples
	org.lcsim: Plot Viewing
	How hard is it to get started with org.lcsim?
	SiD Benchmarking Tools
	Fast MC Detector Simulation (I)
	Fast MC Detector Simulation (II)
	Monte Carlo Production
	There are currently 14 MC production groups:
	For each Production Group There are 5 Steps Needed to Produce MC Data Sets: (corresponding shell script is shown in italics)
	Data Analysis
	Access to 1 ab-1 Standard Model Monte Carlo Data Sets
	Appendix:�WHIZARD Event Generation Details
	remake_process_class copies the file xxxx/whizard.prc to WHIZARD’s conf directory, does ‘make prg’, and then copies the resu
	2. Submit MC Integration Jobs
	3. Repair MC Integration Jobs
	4. Submit MC Event Generation Jobs
	5. Repair Event Generation Jobs

