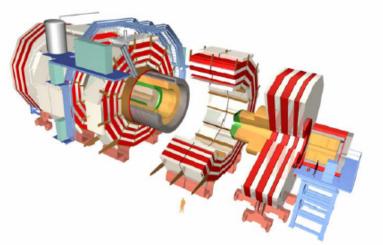
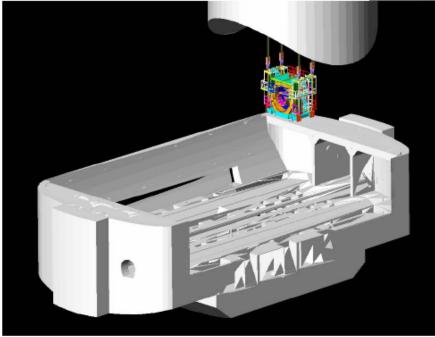

SiD Surface Assembly


0




M. Breidenbach 12 October 2006

## On-surface (a la CMS) assembly

- According to tentative CF&S schedule, the detector hall is ready for detector assembly after 4y11m after project start
- If so, cannot fit into the goal of "7years until first beam" and "8years until physics run"
- Surface assembly allows to save 2-2.5 years and allows to fit into this goal
- The collider hall size is also smaller in this case
  - A building on surface is needed, but savings are still substantial



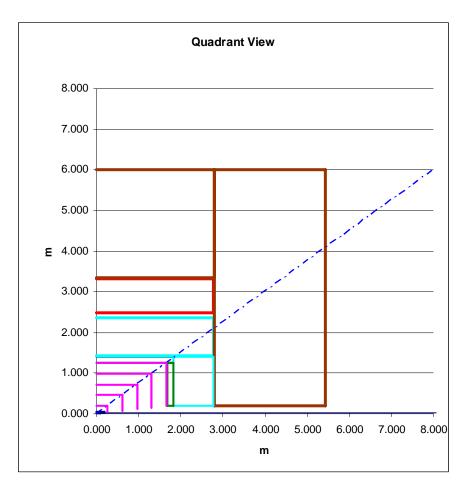




# CMS detector assembly approach:

- Assembled on the surface in parallel with underground work
  Allows pre-commissioning before lowering
- Lowering using dedicated heavy lifting equipment
- Allows saving up to 3 years of time
- Reduce size of underground hall required

Accepted by MDI panel for ILC


| Task Name                           | Duration   | n Start       | Finish     |          | 2008     |      | 2009 | 2010     | )  | 2011 | 2    | 012  | 2013       | 2014   | 2            | 2015         | 2016          | 201      |
|-------------------------------------|------------|---------------|------------|----------|----------|------|------|----------|----|------|------|------|------------|--------|--------------|--------------|---------------|----------|
| Project approved                    | 0 da       | ys 1/1/2008   | 1/1/200    | 8 🗗      | ♦ 1/1/2  | 2008 | }    |          |    |      |      |      |            |        |              |              |               |          |
| Construct detector                  | 391 wł     | s 1/1/2008    | 6/29/201   | 5 4      | -        |      |      |          |    |      |      |      |            |        |              | -            |               |          |
| prepare surface building for detect | or   120 w | ks 1/1/2008   | 4/19/201   | 0        |          |      |      | <b>i</b> |    |      |      |      |            |        |              |              |               |          |
| detector assembly                   | 245 W      | ks 4/20/2010  | 12/29/201  | 4        |          |      |      |          |    |      |      |      |            |        |              |              |               |          |
| detector surface commissioning      | 26 W       | ks 12/30/2014 | 6/29/201   | 5        |          |      |      |          |    |      |      |      |            |        | Ň            |              |               |          |
| Detector ready for BDS              | 0 da       | ys 6/29/2015  | 6/29/201   | 5        |          |      |      |          |    |      |      |      |            |        |              | <b>∳ 6</b> / | 29/2015       | i        |
| Construct beamlines                 | 391 wł     | s 1/1/2008    | 6/29/201   | 5 🛡      | -        |      |      |          |    |      |      |      |            |        |              |              |               |          |
| prepare underground tunnels         | 260 w      | ks 1/1/2008   | 12/24/201  | 2        |          |      |      |          |    |      |      |      | h          |        |              |              |               |          |
| beamline hardware installation      | 105 w      | ks 12/25/2012 | 12/29/201  | 4        |          |      |      |          |    |      |      |      |            |        | <b>1</b>     |              |               |          |
| Start of beam commissioning         | 0 da       | ys 12/29/2014 | 12/29/201  | 4        |          |      |      |          |    |      |      |      |            |        | _ <b>F</b> ♥ | 12/29/2      | 2014          |          |
| BDS beamline pre-commissioning      | ; 26 w     | ks 12/30/2014 | 6/29/201   | 5        | <u> </u> |      |      | <b>c</b> |    | ļ    |      |      |            |        | 4            |              |               |          |
| BDS ready for detector              | 0 da       | ys 6/29/2015  | 6/29/201   | 5        | Or       | 1-   | sur  | fac      | e  | de   | eteo | Ctol |            |        |              | <b>4</b> ⊷6/ | 29/2015       | 5        |
| Final assembly & commissioning      | 26 wł      | s 6/30/2015   | 12/28/201  | 5        | 20       | c    | əml  | h        |    |      |      |      |            |        |              |              | Y             |          |
| Detector underground assembly       | 13 w       | ks 6/30/2015  | 9/28/201   | 5        | ao       | 00   | onn  | Jy       |    |      |      |      |            |        |              | <u>ر</u>     |               |          |
| Final beam commissioning            | 13 w       | ks 9/29/2015  | 12/28/201  | 5        |          |      |      |          |    |      |      |      |            |        |              | Ň            | ا             |          |
| Ready for physics run               | 0 da       | ys 12/28/2015 | 12/28/201  | 5        |          |      | D    |          |    |      | NI   |      | ΔΤ         |        |              |              | 🗳 12/20       | B/2015   |
| Task Name                           | Duration   | Start         | Finish     | 2008     | 2009     | 3    | 2010 | 2011     | 20 | 112  | 2013 | 2014 | 2015       | 2016   | 201          | 7 20         | 18 20         | 19   20  |
| Project approved                    | 0 days     | 1/1/2008      | 1/1/2008   | 🔶 1/1/   | 2008     |      |      |          |    |      |      |      |            |        |              |              |               |          |
| Construct detector                  | 297 wks    | 12/25/2012    | 9/3/2018   |          |          |      |      |          |    |      |      |      |            |        |              |              | -             |          |
| detector assembly                   | 271 wks    | 12/25/2012    | 3/5/2018   |          |          |      |      |          |    | ļ    |      | -    |            |        |              | <b></b> 1    |               |          |
| detector underground commiss.       | 26 wks     | 3/6/2018      | 9/3/2018   |          |          |      |      |          |    |      |      |      |            |        |              | Ň            | <b>1</b>      |          |
| Detector ready for IP               | 0 days     | 9/3/2018      | 9/3/2018   |          |          |      |      |          |    |      |      |      |            |        |              |              | <b>9/3/</b> 2 | 2018     |
| Construct beamlines                 | 557 wks    | 1/1/2008      | 9/3/2018   | <b>—</b> |          |      |      |          |    |      |      |      |            |        |              |              | -             |          |
| prepare underground tunnels         | 260 wks    | 1/1/2008      | 12/24/2012 |          |          |      |      |          |    |      |      |      |            |        |              |              |               |          |
| beamline hardware installation      | 105 wks    | 12/25/2012    | 12/29/2014 |          |          |      |      |          |    |      |      |      | <b>_</b> ] |        |              |              |               |          |
| Start of beam commissioning         | 0 days     | 12/29/2014    | 12/29/2014 |          |          |      |      |          |    |      |      |      | 12/2       | 9/2014 |              |              |               |          |
| BDS beamline pre-commiss.           | 26 wks     | 12/30/2014    | 6/29/2015  |          |          |      |      |          |    |      |      |      | 4          |        |              |              |               |          |
| IP ready for detector               | 0 days     | 9/3/2018      | 9/3/2018   | _        |          |      |      |          |    |      |      |      |            |        |              |              | 9/3/2°ر       | 2018     |
| □ Final assembly & commissioning    | 17 wks     | 9/4/2018      | 12/31/2018 | l        | Jnc      | le   | rgr  | our      | ٦d | d    | ete  | ectc | ) ľ        |        |              |              |               |          |
| Detector moved to IP                | 4 wks      | 9/4/2018      | 10/1/2018  |          |          |      | _    |          |    |      |      |      |            |        |              |              | h             |          |
| Final beam commissioning            | 13 wks     | 10/2/2018     | 12/31/2018 | C        | 285      | el   | וטח  | У        |    |      |      |      |            |        |              |              | Ľη            |          |
| Ready for physics run               | 0 days     | 12/31/2018    | 12/31/2018 |          |          |      |      |          |    |      |      |      |            |        |              |              | <b>v</b> 1    | 2/31/201 |

| Item                                                                                    | SiD                                                               | LDC                                                | GLD                                  | C<br>M<br>S                               | Vanco<br>uver<br>WBS<br>(for<br>each<br>hall) | For<br>Valencia<br>Config.A<br>(for single<br>common<br>hall) | <b>Config.B</b><br>(for single<br>common<br>hall) | Determine<br>d by           |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|-----------------------------|
|                                                                                         | Para                                                              | umeters that define the under                      | ground hal                           | l volum                                   | e                                             | •                                                             | •                                                 | •                           |
| IR Hall Area(m)<br>(W x L)                                                              | 28x48<br>(18x48)                                                  | 30x45                                              | 25x5<br>5                            | 26.<br>5x<br>53<br>ma<br>x                | 32x72                                         | 25x110                                                        | 25x110                                            | Detector<br>concepts        |
| Beam height above IR hall floor (m)                                                     | 7.5                                                               | 8                                                  | 8.6                                  | 8.7<br>9m                                 | 8.6                                           | 8.6                                                           | 8.6                                               | Concepts,<br>BDS            |
| IR Hall Crane Maximum Hook Height<br>Needed(m) 5m above<br>top of<br>detector           |                                                                   | 19                                                 | 20.5                                 | 18<br>m                                   | 30                                            | 20.5                                                          | 20.5                                              | Detector<br>concepts        |
| Largest Item to Lift in IR Hall (weight and<br>dimensions) 100t<br>PACMAN<br>shielding  |                                                                   | 55t, 3m x 3m x 1,5m,<br>E/HCAL end cap<br>quadrant | Piece<br>s of<br>yoke<br>400t        | 20t<br>ins<br>tal<br>too<br>l<br>7x<br>4m |                                               | 400t                                                          | 100t                                              | Detector<br>concepts        |
| IR Hall Crane                                                                           | 100t/10t<br>aux.                                                  | 80t (2x40t)                                        | 400t                                 | 20t                                       | 20t x 2                                       | 400t<br>+2*20t                                                | 100t<br>+2*20t                                    | Detector<br>concepts        |
| IR Hall Crane Clearance Above Hook to the roof (m)                                      | TBD by<br>engineering<br>staff                                    | 6                                                  | TBD                                  | 5<br>m                                    | 5                                             | 14.5<br>(includes<br>arch)                                    | 12.5<br>(includes<br>arch)                        | CF&S<br>group               |
| Resulted total size of the collider hall (W x L x H)                                    | 28x48x30<br>(18x48x30)                                            | 30x45x25                                           | 25x5<br>5x35                         | 53<br>x2<br>6x<br>25                      | 32x72x<br>35                                  | 25x110x35                                                     | 25x110x33                                         | Concepts &<br>CF&S<br>group |
|                                                                                         | Parameters that                                                   | ut define dimensions of the IR                     | hall shaft                           | and the                                   | shaft crane                                   |                                                               |                                                   |                             |
| Largest Item; Heaviest item to Lower<br>Through IR Shaft (weight and<br>dimensions)2006 | Coil<br>package<br>600t – size<br>End-dors<br>2000t<br>each/halfs | Central Part ~2000t; 12-<br>14m x 7m;              | 270t<br>coil<br>9*9m<br>Iron-<br>15m | 19<br>50t                                 |                                               | 9*9m<br>400t                                                  | 4*16m<br>2000t                                    | Detector<br>concepts        |

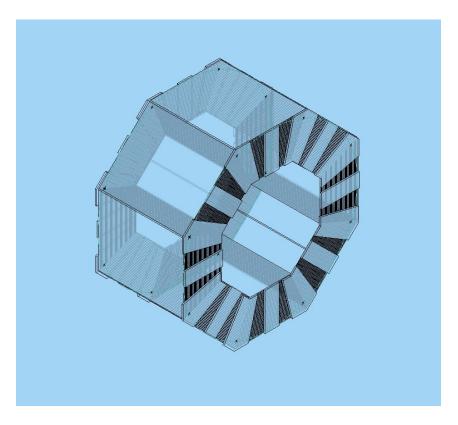
| IR Shaft Size(m)                                                           | 9 may work                      | ∅18,4 (16x9)                                                                                           | 20<br>Surf<br>ace<br>16<br>Hyb<br>rid | 20.4m                                                    | 15                                         | 16                              | 20                                | Detector<br>concepts           |
|----------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|--------------------------------------------|---------------------------------|-----------------------------------|--------------------------------|
| IR shaft fixed surface gantry crane. If rented, duration                   | 1kt * 1.5years?                 | 2kt * 1.5years?                                                                                        | 2kt*<br>1.5y<br>r/<br>400t            | 2kt * 1year                                              | 1kt * 1.5years?                            | None                            | 2kt*<br>1.5ye<br>ars              | Detector<br>concepts           |
| Surface hall crane should serve IR shaft                                   |                                 | Yes                                                                                                    |                                       |                                                          |                                            | Yes                             | Yes                               | Detector<br>concepts           |
| Other shafts near IR hall for access                                       | TBD                             | Yes                                                                                                    |                                       | Yes<br>12m                                               | 9m in service cavern,<br>one per two halls | No                              | No                                | Detector<br>concepts &<br>area |
| Elevator and stares in collider hall shaft                                 | Cost decision                   | ?                                                                                                      |                                       | no                                                       | No                                         | Yes                             | Yes                               | Detector<br>concepts &<br>area |
|                                                                            | Parameters                      | that define dimensions of the su                                                                       | rface asse                            | mbly building an                                         | d its crane                                |                                 |                                   |                                |
| Surface Assembly Building Area(m) (W x L )                                 | TBD                             | 30 x 60                                                                                                | TB<br>D                               | 23.5 x 93<br>inner,<br>23.5 x 140<br>outer               | 25 x 100                                   | 25x20<br>0                      | 25x20<br>0                        | Detector<br>concepts           |
| Largest Item<br>To Lift in SurfAsm. Bldg.<br>(weight and dimensions)       | 100t                            | 70t *;7,5x7<br>inner vac tank<br>60t one coil module<br>55t; 3m x 3m x 1,5m<br>E/HCAL end cap quadrant |                                       | 120t 13x7<br>inner vac<br>tank<br>60t one coil<br>module |                                            | 400t                            | 100t                              | Detector<br>concepts           |
| Surface Assembly Crane                                                     | 100t/10t aux.<br>(TBD)          | 2x80t*<br>min 2x60t                                                                                    | 400t                                  | 80t x 2                                                  | 80t x 2                                    | 400t +<br>2*20t                 | 100t +<br>2*20t                   | Detector<br>concepts           |
| SurfAsm. Crane Maximum Hook Height<br>Needed(m)                            | 20m TBD                         | 19 m *                                                                                                 |                                       | 18.3 m                                                   | 18                                         | 18                              | 18                                | Detector<br>concepts           |
| SurfAsm. Crane Clearance Above Hook to the roof (m)                        | ME/Civil to determine           | 5 m to ceiling*                                                                                        |                                       | 5.7 m to<br>outside                                      | 5                                          | 8                               | 6                                 | CF&S grou                      |
| Resulted volume of surface assembly building<br>(m)<br>(W x L x H)         |                                 | 30 x 60 x 24                                                                                           |                                       | 23.5 x 100 x<br>23.5 outer                               | 25 x 100 x 23                              | 25 x<br>200<br>x26              | 25 x<br>200<br>x24                | Concepts &<br>CF&S grou        |
|                                                                            | Param                           | eters that define crane access are                                                                     | ea and clea                           | arance around de                                         | rtector                                    |                                 |                                   |                                |
| SurfAsm. crane accessible area (needed) /<br>available (m)<br>wctpper 2006 | CG of load on<br>150ton trailer | 56 x 28                                                                                                |                                       | 19 x 92 m                                                |                                            | (20x1<br>02m?)<br>15 x<br>184 m | (20x1<br>02m?)<br>20.5 x<br>192 m | Detector<br>concepts &         |

|                | SurfAsm. crane accessible<br>area (needed) / available<br>(m)<br>(W x L) | CG of load<br>on 150ton<br>trailer | 56 x 28                                                                 |             | 19<br>x<br>92<br>m |     | (2<br>0x<br>10<br>2<br>m<br>?)<br>15<br>x<br>18<br>4<br>m | (20x<br>102<br>m?)<br>20.5<br>x<br>192<br>m | Detector<br>concepts &<br>CFS |
|----------------|--------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|-------------|--------------------|-----|-----------------------------------------------------------|---------------------------------------------|-------------------------------|
|                | IR hall crane accessible<br>area (needed) / available<br>(m)<br>(W x L)  | TBD                                | 28 x 41<br>min 25 x 35*                                                 |             | 17<br>x<br>42      |     | (2<br>0x<br>10<br>2<br>m<br>?)<br>19<br>x<br>96<br>m      | (20x<br>102<br>m?)<br>22 x<br>98<br>m       | Detector<br>concepts &<br>CFS |
|                | Maximum Detector<br>Height(m)                                            |                                    | 16 m                                                                    |             | 16.<br>9           |     |                                                           |                                             | Detector<br>concepts          |
|                | Detector Diameter (m)                                                    | 12.9                               | 13 m                                                                    | 1<br>5<br>3 | 16<br>m            |     |                                                           |                                             | Detector<br>concepts          |
|                | Minimum Detector<br>Clearance (m)<br>(W x L x H)                         |                                    | 15x18.4x16<br>(without scaffold + 3m each side)                         |             |                    |     |                                                           |                                             | Detector<br>concepts          |
|                |                                                                          | FILL IN OTHER                      | IMPORTANT PARAMETERS WHICH                                              | ARI         | E MISS.            | ING |                                                           |                                             |                               |
|                | Electronic hut size                                                      |                                    | ~18 x 9 x 10m                                                           |             |                    |     |                                                           |                                             |                               |
|                | Electronic hut location                                                  |                                    | TBD. Possibly, connected to the side of detector if it is self shielded |             |                    |     |                                                           |                                             |                               |
|                | When the electronic hut is installed underground                         |                                    | After assembly of detector                                              |             |                    |     |                                                           |                                             |                               |
| 12 October 200 | 06                                                                       |                                    |                                                                         |             |                    |     |                                                           |                                             |                               |

## SiD Quadrant View



Solid Edge Model


This model will be used for an assembly animation, perhaps even this CY!

SiD Door Concept



12 October 2006

#### Flux Return



The only input (so far) is enough steel to nominally return the flux, and 10 cm laminations w 5 cm gaps all the way through. The gaps make the radiation physicists looking at self-shielding nervous! We should collapse the un-needed gaps in the next iteration - how about 3 stations of 2 gaps for muons??

# A Starting Plausible Sequence (Maybe)

#### • On the surface

- Flux return modules are assembled and muon trackers tested.
- HCal & EMCal modules are assembled and tested.
- Assemble upper halves of end frame and lower segments of flux return to form nest for the coil.
- Install coil in nest (temporarily). Test coil at low excitation.
- Insert HCaL using threaded beam. Load is taken by the cryostat.
- Insert EMCal using threaded beam. Load is taken by HCal.
- Lower:
  - Lower halves of end frame into pit and temporarily brace. Lower flux return segments are attached to the frames.
  - Coil into new nest and attach.
  - Upper frame segments and attach.
  - Upper flux return segments and attach.
- It is assumed that the tracker and the VXD are too late for surface assembly, and they must be installed in the pit!!

### Doors

- The strategy depends on the hoist capacity. It appears each door weighs ~ 2200 tonnes. If the hoist can manage this mass, each door can be lowered totally pre-assembled.
- Each door (might, maybe, possibly could) consist of two leg assemblies and 4 flux return segments. Each goes down individually.

# SiD Installation Mass, Stainless HCal

| Installatio   | n                              |           |          |                                                       |  |           |           |      |  |
|---------------|--------------------------------|-----------|----------|-------------------------------------------------------|--|-----------|-----------|------|--|
|               |                                | R_Trkr=   | 1.25     | m                                                     |  | Stainless | Hcal Radi | ator |  |
|               |                                |           |          |                                                       |  |           |           |      |  |
|               | Compone                        | nt masses | (tonnes) |                                                       |  |           |           |      |  |
|               | Barrel                         | Endcap    |          |                                                       |  |           |           |      |  |
|               |                                |           |          |                                                       |  |           |           |      |  |
| EMCal         | 59                             | 19        |          |                                                       |  |           |           |      |  |
| Hcal          | 354                            | 33        |          |                                                       |  |           |           |      |  |
| Coil          | 160                            |           |          |                                                       |  |           |           |      |  |
| Iron          | 2966                           | 2130      |          | Support structure is not included. Probably ~10% more |  |           |           |      |  |
|               |                                |           |          |                                                       |  |           |           |      |  |
|               |                                |           |          |                                                       |  |           |           |      |  |
| Coil Installa | Coil Installation Package Mass |           |          | 574                                                   |  |           |           |      |  |
| Endcap Pa     | ckage Mass                     | 6         |          | 2182                                                  |  |           |           |      |  |

# SiD Installation Mass, Tungsten HCal

| Installation  | l            |              |        |                                                       |  |   |            |      |  |
|---------------|--------------|--------------|--------|-------------------------------------------------------|--|---|------------|------|--|
|               |              | R_Trkr=      | 1.25   | m                                                     |  | W | Hcal Radia | ator |  |
|               |              |              |        |                                                       |  |   |            |      |  |
|               | Componer     | nt masses (t | onnes) |                                                       |  |   |            |      |  |
|               |              |              |        |                                                       |  |   |            |      |  |
|               | Barrel       | Endcap       |        |                                                       |  |   |            |      |  |
| EMCal         | 59           | 19           |        |                                                       |  |   |            |      |  |
| Hcal          | 438          | 46           |        |                                                       |  |   |            |      |  |
| Coil          | 140          |              |        |                                                       |  |   |            |      |  |
| Iron          | 2370         | 1690         |        | Support structure is not included. Probably ~10% more |  |   |            |      |  |
|               |              |              |        |                                                       |  |   |            |      |  |
|               |              |              |        |                                                       |  |   |            |      |  |
| Coil Installa | tion Package | e Mass       |        | 637                                                   |  |   |            |      |  |
| Endcap Pac    | kage Mass    |              |        | 1755                                                  |  |   |            |      |  |

## Comments

- The diagonal of the coil package is 8.7 m. There are other services in the main shaft (elevator, stairs), but this is relatively modest. (Presumably the coil goes down with its axis horizontal!)
- The "diagonal" of the door is ~11 m, with ~2 m more needed for leg extensions. Probably the door should go down in pieces.
- Appears that 1000 tonne hoist should be adequate.
  - It is not obvious that a traveling gantry would be more expensive than a traveling floor over the shaft (cf CMS). If the detectors are self-shielded, then a cover is not required.
- A surface building ~30 x 40 m seems adequate. Careful study is needed before committing!
- A super crude guess is ~ 2 years of pit access would be enough for final assembly and commissioning.
- This scenario is plausible but far from unique. Real engineering is needed.
- Surface assembly seems ok, but will require careful planning.