

Status of Tracking Design, Performance and R&D

SiD Workshop

Marcel Demarteau, Richard Partridge Fermilab

For the SiD Tracking Group

SLAC Oct. 27, 2006

 J. Albert³, F. Blanc¹¹, M. Breidenbach⁹, W. Cooper⁴, C. Damerell⁸, M. Demarteau⁴, J.F. Genat⁶, N. Graf⁹, J. Goldstein⁸, S. Hillert⁷, M. Hrycyk⁴, J. Jaros⁹, T. Johnson⁹, K. Krempetz⁴, T. Maruyama⁹, J. McCormick⁹, C. Milstene⁴, T. Nelson⁹, D. Onoprienko⁵, R. Partridge², A. Savoy-Navarro⁶, B. Schumm¹⁰, S. Seidel¹², N. Sinev¹³, D. Su⁹, E. von Toerne⁵, S. Wagner¹¹, S. Worm⁸, H. Weerts¹

- 1. Argonne
- 2. Brown University
- 3. Caltech
- 4. Fermilab
- 5. Kansas State University
- 6. LPNHE Université de Paris 6/IN2P3-CNRS
- 7. Oxford University
- 8. Rutherford Appleton Laboratory
- 9. SLAC
- 10. UCSC
- 11. University of Colorado
- 12. University of New Mexico
- 13. University of Oregon

apologies to those we forgot

ILC Physics Characteristics

o(fb)

- Machine design luminosity $\pounds = 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} (\sqrt{\text{s}} = 500 \text{ GeV})$
- Processes through s-channel spin-1 exchange: σ ~ 1/s
 - Cross sections relatively democratic
 - Cross sections are small
 - Angular distribution: $(1 + \cos^2 \theta)$
 - Premium on forward region
 - Hermetic detectors
 - Relatively large backgrounds
 - 100k e⁺e⁻ pairs per bunch crossing
- W and Z bosons in all decay modes become the main objects to reconstruct
 - Discriminate W and Z in hadronic decay mode
- Highly polarized e⁻ beam: ~ 80%
 - To employ discriminating power requires running at both polarities
- Every event counts !

ILC year: 50% machine duty cycle

50% overall detection efficiency

Tracker Baseline

 5-Layer silicon strip outer tracker, covering R_{in} = 22 cm to R_{out} = 122 cm, to accurately measure the momentum of charged particles

- Support
 - Double-walled CF cylinders
 - Allows full azimuthal and longitudinal coverage
- Barrels
 - Five barrels, measure Phi only
 - Varying phi segmentation
 - 10 cm z segmentation
 - Barrel lengths increase with radius
- Disks
 - Four double-disks per end
 - Measure R and Phi
 - Varying R segmentation
 - Disk radii increase with Z

Tim Nelson

- Mounting clip
 - CF-filled PEEK or Torlon with custom Si₃N₄ inserts
- Mounting strip
 - 30% CF-filled Torlon (or PEEK), CTE = Si + 3×10-6 /°K
 - 0.125" Si₃N₄ balls, insert-molded
- Support frame
 - 0.125" Rohacell foam sheet
 - Two 60-60-60, 0.009" thick, high-modulus CF sheets
 - 50% void CF under chip
- Overall design
 - Boxes are square
 - Outer dimensions:
 0.3 cm x 9.65 cm x 9.65 cm
 - Sensor active dimensions:
 9.2 cm x 9.2 cm
 - Sensors positioned mid-way through the thickness of a box
 - Closest separation between boxes = 0.1 cm
- Design needs a review
 - Mass budget is ~0.5%X₀
 (0.8%X₀ with support barrels)

Sensor Design

Tim Nelson

- Readout does not employ a hybrid
- Sensor design uses bump-bonded readout chip
 - Sensor size 93.5mm x 93.5mm
 - Strip/Readout pitch 25 / 50 µm
 - Number of RO (IM) strips 1840 (3679)
 - Need two readout chips
 - Double metal layer optimized for strip geometry
 - Minimize capacitance and balance
 with trace resistance
 - S/N goal of 25
- Sensor design needs formal review and sign-off
- University of New Mexico approached for cable design

- First pass at wafer and sensor specifications, acceptance criteria and definition of measurements at manufacturer
 - Needs revision
- Expect to place an order with HPK this calendar year

Parameter	Value		
Overall Dimensions	$93.531 \text{mm} \times 93.531 \text{mm}$		
Active Area	$92.031 \text{mm} \times 92.031 \text{mm}$		
Strip pitch	$25 \ \mu m$		
Readout pitch	$50 \ \mu m$		
Number of strips	3679		
Number of readout strips	1840		
Depletion voltage	$60V < V_{dep} < 100V$		
Depletion voltage uniformity	< 20%		
Biasing scheme	poly resistors along both edges		
Poly resistor value	$4.5 \pm 0.5 M\Omega$		
Implant strip width	$8 \ \mu m$		
Implant depth	$> 1 \mu m$		
Doping of Implant	$> 1 \times 10^{14} \text{ ions/cm}^3$		
Width of Al sense strips	7 to 8 μm		
Width of Al readout traces (double-metal)	$3 \text{ to } 4 \ \mu \text{m}$		
Thickness of Al traces (all)	$> 1 \mu m$		
Resistivity of Al sense strips	$< 30\Omega/cm$		
Resistivity of Al readout traces (double-metal)	$< 60 \Omega/\mathrm{cm}$		
Thickness of insulating layer between metal layers	$3 \mu m$		
Coupling capacitor value	> 10 pf/cm		
Passivation	$SiO_2 0.5-1.0 \mu m$ thick		
Width of unpassivated regions along bias ring	$\geq 200 \mu m$		
Junction breakdown	> 200 V		
Micro-discharge breakdown	> 150 V		
Coupling capacitor breakdown	> 100 V		
Total detector current at 150V	$< 20 \mu$ A		
Interstrip capacitance	< 1.2 pf/cm		
Non-working strips	< 20 strips detector		

- kPiX chip
 - KPiX3-64, most recent chip
 - Is being bench tested
 - Plan to bond to a sensor?
 - Next version, KPiX4-64, will include nearest-neighbor logic for tracker use
- Readout cable
 - Design progressing for calorimeter
 - Expression of interest from University of New Mexico to work on cable design
 - Design not started

Tracker Design Update

Bill Cooper

- May '06 design has been updated to reflect module design
 - Lengths of the outer tracker barrels have been adjusted so that material is less directly aligned with trajectories from the origin
 - An initial attempt has been made at an arrangement for sensor boxes of the outer tracker barrels

Layer	# Phi	# Z	Rot. Angle	R (cm)	P _T (GeV/c)
1A	20	7	10.12 °	21.75	
1B	20	6	9.94 °	22.15	0.221
2A	38	9	7.03 °	46.75	
2B	38	10	6.97°	47.15	0.478
3A	58	13	6.60°	71.75	
3B	58	12	6.57°	72.15	0.710
4A	80	15	6.60°	96.75	
4B	80	16	6.58°	97.15	0.906
5A	102	19	6.58°	121.75	
5B	102	18	6.56°	122.15	1.112

Module Tiling

- Each sensor is positioned midway through the thickness of a box
- Box thickness 0.3 cm to limit the gaps between sensors
- A- and B-layer boxes have been aligned; might simplify box mounts

- Offsetting B-layer boxes with respect to A-layer boxes to be considered
 - improves the low PT cutoff for the A-layer, but not the B-layer
 - Offsetting slightly could make rotation angles of the two sub-layers identical

Bill Cooper

Pointing material has been spread out

- Forward disks
 - Currently, disks represented by 4 planes with a plane-to-plane separation of 0.2 cm.
 - But, no tiling concept exists
 - Dedicated one tracking meeting to a discussion of various tiling concepts without conclusion
- We need to initiate a study that addresses the tiling

Large Angle Stereo

Shallow Angle Stereo

SiD Workshop, SLAC, Oct. 28, 2006, Marcel Demarteau

- The baseline has three small area disks in the small angle tracker vertex detector overlap region
 - Small area disks within radius of 20 cm
 - The first three outer tracker disks do not reach cos (theta) = 0.99, but forward disks in the VXD region do
- We have no quantitative measure of this region

• Geometry

Jeremy McCormic Tim Nelson

- Moving from a cylindrical geometry in the Monte Carlo to a planar geometry
 - Realistic z-segmentation with overlap; End cap regions not yet done
- Allows for
 - Track finding/fitting constraints provided by z-segmentation and stereo angle
 - Ghosting in double-sided layers (esp. forward)
 - Realistic modeling of occupancies (esp. forward)
 - Lorentz angle studies with sensor tilt
 - Clustering issues
 - Efficiency studies of cracks between phi/z overlaps
- Associated software well underway
 - Hit encoder and decoder
 - barrel/endcap flag
 - layer number
 - number of module in phi layout
 - number of module (sensor) in z layout
- Integrating New Geometry into Tracking Reconstruction
 - Sensitive volumes create TrackerHits using sistripsim code
 - Allows for immediate use of existing tools with new geometry
 - Considering more advanced tools
- Geometry needs to be reconciled with Bill's updated geometry

Tracking simulation is a multi-layered effort

From Rich's Vancouver talk

- Hit Digitization
 - Detector hits are not created during GEANT simulation
 - Allows readout segmentation to be changed without re-running GEANT
 - Hit formation (Nick Sinev (ccd), Tim Nelson (strips))
 - Charge deposition
 - Turn energy deposits into charge on nearby strips
 - Include Lorentz angle, diffusion, capacitive coupling, noise
 - Readout Segmentation and Clustering
 - Map strip charges onto the readout segmentation
 - Sum charges when multiple particles produces charge on the same strip
 - Find clusters of strips and form "TrackerHit" with hit position and error

Track Finding

- Conformal Mapping (Norm Graf)
 - · Conformal mapping of circular trajectory to a straight line
 - Current package works from 3D hits needs strip digitization + ghosting
 - · Results presented in tracking meetings for forward tracking
- Vertex Seeded Tracking (Fred Blanc, Rich Partridge, Steve Wagner)
 - · Find track seed in vertex tracker and pick up hits in outer tracker
 - Results presented in tracking meetings using MC truth for vertex seeds
- Calorimeter Seeded Tracking (Dima Onoprienko, Eckhard von Törne)
 - Find MIP stubs in calorimeter and pick up hits in outer tracker
 - Can be used to find long-lived secondaries (K_{s} , Λ , etc.)
- Stand-alone Outer Tracking (Bruce Schumm, Tim Nelson)
 - Find track candidates using outer barrel tracker

Software

Track Fitting

- Weight Matrix (Nick Sinev)
 - Performs a χ^2 fit of hits to a helix including multiple scattering correlations
- Kalman Filter (Fred Blanc, Norman Graf)
 - Uses Kalman Filter to adapt trajectory for observed multiple scattering

Tracking Performance

- Developing tools which allow to study effects of detector design on tracking resolutions with full detector simulation
- Current studies limited to weight matrix fitter; need to extend to Kalman fitter

Tracking Performance

• 2d-Impact parameter resolution versus momentum

p_T (GeV)

- Good progress given the limited resources
- Geometry now well defined and suitable for detailed studies
- All the tools are slowly becoming available to do full tracking studies
- We have to move from tool development to
 - utilizing tools
 - confronting them with physics benchmarking processes
 - optimizing the detector design
- The group is gaining momentum, we should try to sustain that
- Exploit all areas where there is a possibility for collaboration