SiD Benchmarking Meeting, SiD Workshop, SLAC Oct 26-28, 2006

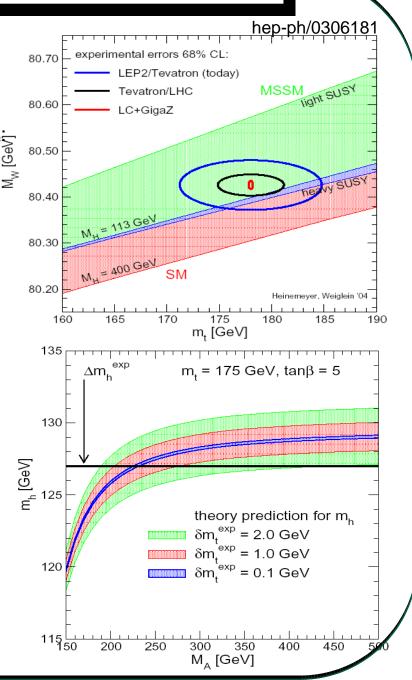
Input from Top to Accelerator Parameters Group

S. Boogert, P. Burrows, K. Fujii, F. Gournaris A. Hoang, <u>A. Juste</u>, T. Teubner, Y. Sumino

Request from Parameters Group

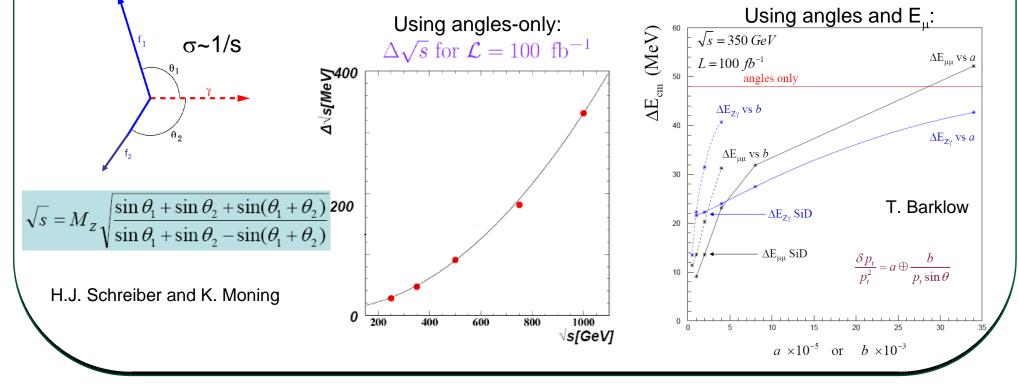
- Accelerator Baseline Document: http://www.fnal.gov/directorate/icfa/LC_parameters.pdf
- ILCSC (in close collaboration with WWS and GDE) has re-activated the "Parameters Group" to revisit the Baseline Design taking into account new insights and development as well as provide cost versus performance guidance.
 - \Rightarrow needed for the finalization of the RDR and preparation for the TDR.
 - \Rightarrow goal is have results presented to the WWS and GDE at the ECFA meeting in Valencia.
- Input requested from different physics working group regarding dependence of physics performance with respect to accelerator parameters: energy, luminosity and polarization.
- Question for Top working group: What is the achievable precision for the top mass measurement? Please provide information for two energies: a) threshold scan, b) 500 GeV How much luminosity is needed to reach the expected level of theoretical uncertainties?
- Additional questions to be addressed:
 - Is there any impact of decreasing (increasing) beamstrahlung by a factor of two relative to the standard parameters, i.e. trading off luminosity vs background?
 - Is there any benefit from electron plus positron polarisation (80 and 60%) or from increased electron polarisation in the absence of positron polarisation?
 - Are there other accelerator parameters strongly influencing this measurement?

Impact of a Precise m_t Measurement

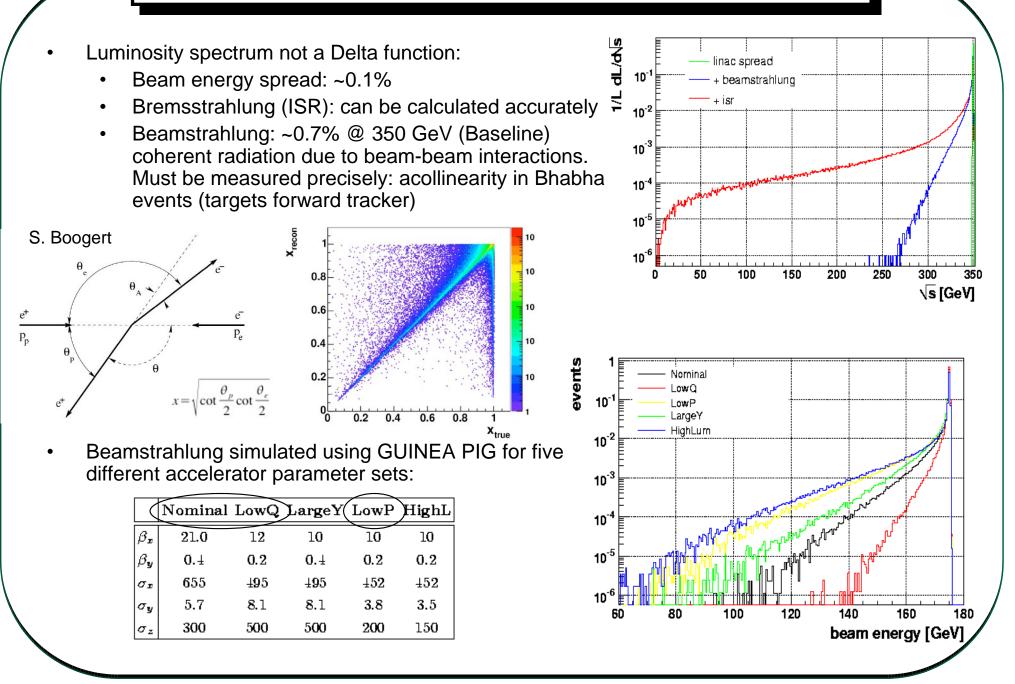

- Important ingredient for EW precision analyses at the quantum level.
- quantum level. • ILC precision on m_t will be needed to match future experimental/experimental accuracy on M_W and $\sin^2\theta_{eff}$

Experimental	Today Tevatron/LHC		ILC	GigaZ	
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	(10^5) 16 14–20			1.3	
$\delta M_W [{ m MeV}]$	34	15	10	7	

Intrinsic theoretical: $\delta M_W = 4 \text{ MeV}, \ \delta \sin^2 \theta_{eff} = 4.9 \times 10^{-5}$ Parametric theoretical:


 $\begin{array}{ll} \delta m_t = 4.3 \; \text{GeV} \Rightarrow \delta M_W = 26 \; \text{MeV}, \; \delta sin^2 \theta_{eff} = 14 \times 10^{\text{-5}} \\ \text{LHC:} & = 1.5 \; \text{GeV} \Rightarrow \delta M_W = -9 \; \text{MeV}, \; \delta sin^2 \theta_{eff} = 4.5 \times 10^{\text{-5}} \\ \text{ILC:} & = 0.1 \; \text{GeV} \Rightarrow \delta M_W = -1 \; \text{MeV}, \; \delta sin^2 \theta_{eff} = 0.3 \times 10^{\text{-5}} \end{array}$

- M_H depends sensitively on m_t in all models where M_H can be predicted (e.g. MSSM).
 Need LC precision on m_t in order to exploit LHC (and LC) precision on Higgs sector measurements.
- Other examples:
 - RGE running to higher scales
 - ...



Beam Energy

- Precise detemination of absolute beam energy critical for many physics measurements:
 - Top mass: 200 ppm ($\Delta m_t = 35 \text{ MeV}$)
 - Higgs mass: 200 ppm ($\Delta M_{H} = 60 \text{ MeV}$ for $M_{H} = 120 \text{ GeV}$)
 - Giga-Z program: 50 ppm
- Main methods envisioned:
 - Accelerator diagnostics: pre-IP and post-IP energy spectrometers. Can achieve 10⁻⁴ precision but will be dominated by systematics and don't measure luminosity-weighted bunch energy.
 - e⁺e⁻ → μ⁺μ⁻(γ) events: measure what's needed but statistics-limited and full analysis still needs to be performed to understand real potential.

Luminosity Spectrum

Beam Polarization

- Baseline machine: |P(e⁻)| ~ 0.8
 Option: in addition to electron polarization, |P(e⁺)| ~ 0.6
- In the case of tt+X, mediated by γ,Z, only the two J=1 configurations for helicity of the e⁻ and e⁺, σ_{RL} and σ_{LR}, contribute. The cross section for arbitrary longitudinal beam polarization can be expressed as:

$$\sigma_{P_{e^-}P_{e^+}} = (1 - P_{e^+}P_{e^-}) \sigma_0 [1 - P_{\text{eff}} A_{\text{LR}}]$$

Jnpolarized cross sectionEffective polarizationLeft-right asymmetry
$$\sigma_0 = \frac{\sigma_{\rm RL} + \sigma_{\rm LR}}{4}$$
 $P_{\rm eff} = \frac{P_{e^-} - P_{e^+}}{1 - P_{e^+}P_{e^-}}$ $A_{\rm LR} = \frac{\sigma_{\rm LR} - \sigma_{\rm RL}}{\sigma_{\rm LR} + \sigma_{\rm RL}}$

 \Rightarrow Two potential enhancement factors with respect to σ_0

 $(1 - P_{e^+}P_{e^-})$: requires to have BOTH beams polarized

 $[1 - P_{eff} A_{LR}]$: requires to have $A_{LR} \neq 0$ AND to choose the signs of P_{e+} and P_{e-} such that $sign(P_{eff} A_{LR}) < 0$

<u>Within the SM</u>, $A_{LR} \sim +0.44$ (essentially independent of \sqrt{s}), driven by the Z exchange.

• Measurement of luminosity-weighted polarization can be performed e.g. using W+W⁻ events Sensitive to TGCs $e^ \gamma/Z^0$ $W^$ $e^ W^ W^-$

Top Pair Production at Threshold

- Large Γ_t : cutoff for non-perturbative QCD effects
 - Top decays before top-flavored hadrons or tt-quarkonium bound states can form.
 - Use non-relativistic pQCD to compute σ_{tt} near threshold.
- Remnants of toponium S-wave resonances induce a fast rise of σ_{tt} near threshold.

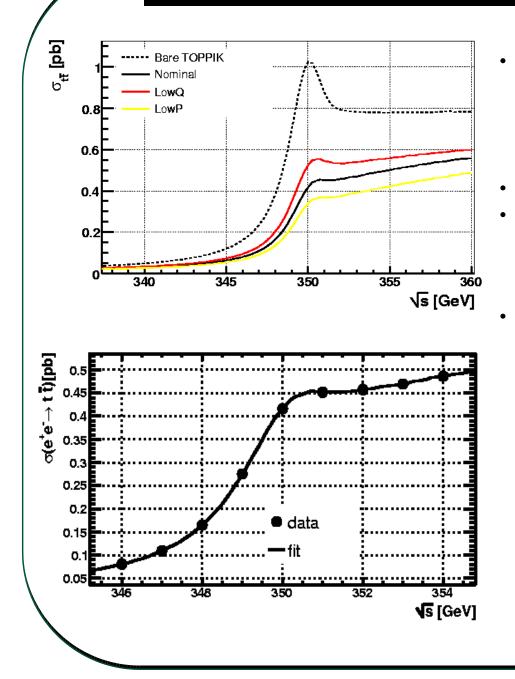
Basic parameters: σ_{tt} (m_t, α_s , Γ_t)

 \Rightarrow high precision expected (color singlet system, counting experiment,...)

Convergence of calculation sensitive to m_t
 definition used: pole mass is not IR-safe

 $\Rightarrow \sigma_{tt}^{\text{ peak}}$ not stable vs \sqrt{s}

Solution is to use threshold masses: e.g. 1S mass (=1/2 the mass of the lowest tt bound state in the limit $\Gamma_t \rightarrow 0$).


High accuracy in absolute normalization requires velocity resummation.

State of the art (NNLL): $(\Delta \sigma_{tt})_{QCD}$ ~6%

• Goal: 3% \Rightarrow important to take into account previously neglected %-level effects: EW corrections (Γ_t +non-resonant W+bW-b background, QED), non-factorizable QCD corrections,... \Rightarrow a lot of work ahead!

Top Mass Measurement at Threshold (I)

Lineshape significantly distorted by luminosity spectrum:

$$\sigma^{\rm obs}(\sqrt{s}) = \frac{1}{L_0} \int_0^1 L(x) \,\sigma(x\sqrt{s}) \,\mathrm{d}x$$

- Precise determination of dL/d \sqrt{s} and \sqrt{s} critical. Consider only Nominal, LowQ and LowP parameter sets.
 - Perform scan in \sqrt{s} around the threshold region and compare measurement of various observables to theoretical predictions as a function of model parameters.

Following hep-ph/0207315:

- 10 uniformly distributed scan points, one of them well below the threshold to measure the background. Same luminosity per scan point. Scan strategy not optimized.
- Consider lepton+jets and all-jets final states: ϵ_{tt} ~41%, no background assumed

Top Mass Measurement at Threshold (II)

- Perform simultaneous measurement of m_t^{1S} and α_s considering only σ_{tt} observable.
- Statistical uncertainty:

ര_{ണ്} [MeV]

100E

90E

80

70

60

50 F

40

30[

20E

10

- Scales like $1/\sqrt{(L/point)}$.
- Improves as effective luminosity increases for parameter sets with smaller beamstrahlung.
- Can be further improved by making use of polarized beams: i.e. can reduce total L invested in scan.

Nominal

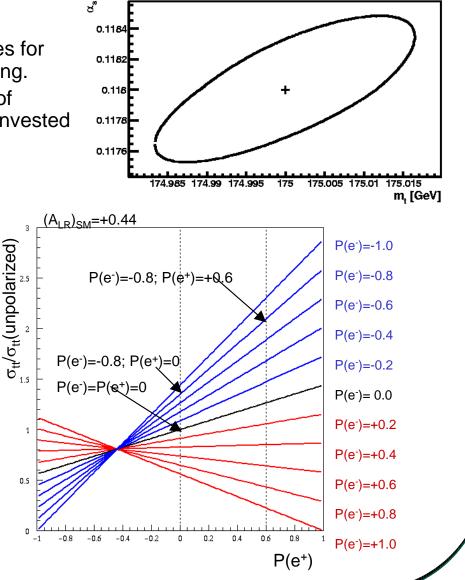
LowQ

LowP

25

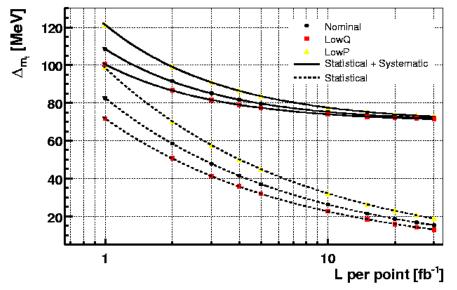
30

L per point [fb⁻¹]


• It's not the whole story...

10

5


15

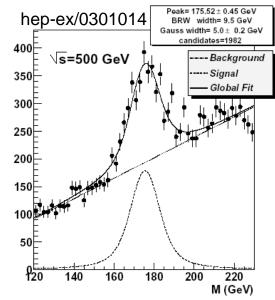
20

Top Mass Measurement at Threshold (III)

- Systematic uncertainties (only ones considered in this study):
 - Detemination of absolute beam energy: assume 35 MeV
 - Determination of luminosity spectrum: assume 50 MeV independent of parameter set. A-priori expect performance (an systematic uncertainties) of acollinearity method to degrade if both beams radiate significantly. More realistic estimate underway.
 - Theoretical uncertainty on σ_{tt} (6%): 35 MeV

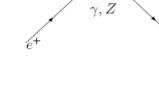
• Conversion from 1S to MSbar mass definition involves an additional systematic uncertainty.

 $\delta \overline{m}_t(\overline{m}_t) = \delta m_t^{1S} \pm 70 \text{ MeV(pert)} \pm x \cdot 70 \text{ MeV}(\alpha_s)$

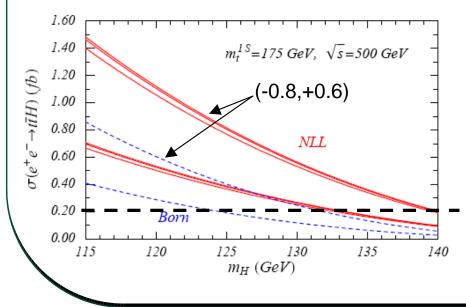

- Tentative conclusion: total uncertainty on MSbar $m_t \sim 120$ MeV relatively independent of accelerator parameters (within LowQ to LowP range) for L/point ≥ 5 fb^{-1.}
- Caveat: this doesn't include a study of the impact of beam-beam backgrounds.

Top Mass Measurement in the Continuum

Direct reconstruction can yield competitive statistical uncertainties: Fully hadronic decay channel: ∆m_t(stat)~100 MeV, L=300 fb⁻¹ Events / 2 GeV


Force event to 6 jets $\left|M_{123} - M_{456}\right| < 40 \, GeV, \left|\vec{P}_{123} - \vec{P}_{456}\right| < 20 \, GeV$ Reduced set of cuts: No kinematic fitting orb-tagging.

- Better understanding of experimental systematic uncertainties needed. Preliminary estimates:
 - Fragmentation+hadronization modeling: ~250-400 MeV
 - Bose-Einstein correlations: 100-250 MeV
 - Color reconnections: O(100) MeV
- In addition, what's being determined is the pole mass(?). Conversion to m_t (MSbar) suffers from large renormalon ambiguity: Δm_t (theo)~O(Λ_{OCD})
- Expected total uncertainty: ≥500 MeV, systematics-dominated and independent of the accelerator parameters.
- Caution: top mass measurement is only a small fraction of the Top Physics program. Other equally-important measurements are definitely more sensitive to accelerator parameters!.


Example: Top-Higgs Yukawa Coupling

- The top-Higgs Yukawa coupling is the largest coupling of the Higgs boson to fermions. Precise measurement important since the top guark is the only "natural" fermion from the EWSB standpoint.
- Can be determined via cross section measurement: $\sigma_{_{ffh}} \propto g^2_{_{ffh}}$
- σ_{tth} (Born) ~ 0.2(2.5) fb at \sqrt{s} =500(800) GeV for m_b=120 GeV
- Previous study: ٠ \sqrt{s} =800 GeV, L=1 ab⁻¹, $\Delta g_{ttH}/g_{tth} \sim 6(10)\%$ for m_H=120(190) GeV \Rightarrow What are the prospects at $\sqrt{s}=500$ GeV? First estimate: $\Delta g_{ttH}/g_{tth} \sim 23\%$ for m_H=120 GeV, L=1 ab⁻¹ [AJ, 2002]

hep-ph/9910301 hep-ph/0604034

However, at $\sqrt{s}=500$ GeV the tt dynamics is non-relativistic • \Rightarrow use vNRQCD as in the tt threshold

Considering σ_{tth} enhancement due to:

- QCD resummation effect: x2.4 (m_{h} =120 GeV)
- $(P(e^{-}), P(e^{+})) = (-0.8, +0.6)$: x2.1

Anticipate: $(\Delta g_{ttH}/g_{tth})_{stat}$ ~10% for m_H=120 GeV, L=1 ab⁻¹ (measurement potentially possible up to $m_{\mu} \sim 140 \text{ GeV}!!$)

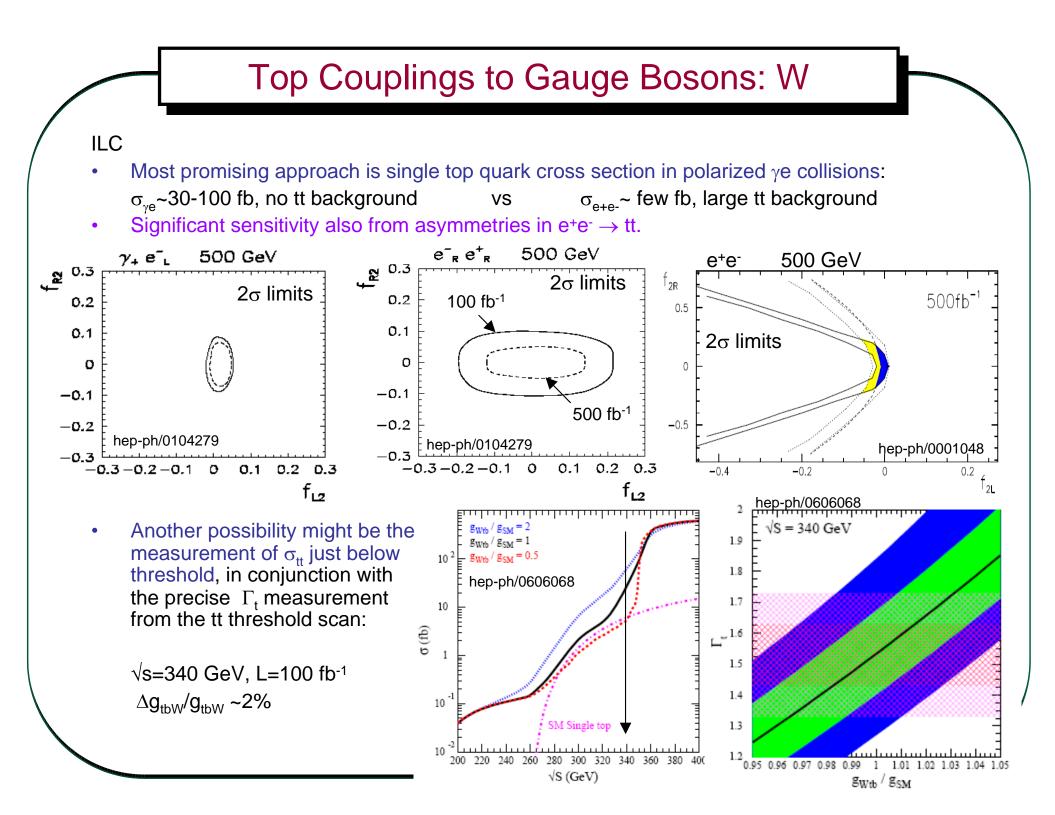
- Large sensitivity to beamstrahlung: cross section reduced by~40% ($m_{\rm b}$ =120 GeV)
- An unrelated benchmarking question: dominant background is tt+jets. Is the measurement completely killed as soon as one considers minijets from beam-related backgrounds?

Conclusions

- Tentative (minor) conclusion: the top quark mass measurement seems to place only mild constraints on accelerator parameters.
- Main conclusion:

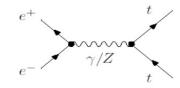
A comprehensive program of benchmarking measurements must be established as soon as possible, including an increasingly more realistic description of the detector, reconstruction algorithms and backgrounds (both physics and beam-related).

- Crucial to design and optimize the detector towards the CDR.
- Critical to ensure we are in a position to provide accurate and complete information on the impact on the physics from engineering/cost-related decisions that will unavoidably be taken on both accelerator and detector fronts.


Backup

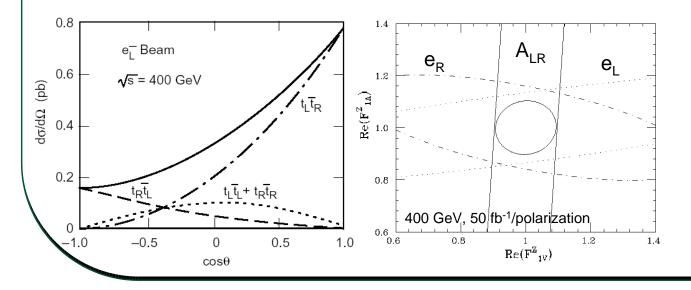
Top Couplings to Gauge Bosons: g At the ILC, the main observable explored so far is the energy spectrum of the gluon in $e^+e^- \rightarrow ttg$. hep-ph/9605361 101 $\sqrt{s} = 500 \text{ GeV}$ √s = 500 GeV 50 fb⁻¹ Fit region 0.8 ا/م₀ da/dz 10⁰ 100 fb⁻¹ 0.6 95% allowed ۶Ż 10⁻¹ region 0.4 $\kappa = +$ 10⁻² κ=0 (SM S.0 $\kappa = -1$ $= 2E_a/\sqrt{s}$ 10^{-3} 0.4 0.5 0.0 0.3 -0.04-0.02 0 0.02 0.04 0.06 Ζ

• Reach in chromo-electric dipole moment ($\tilde{\kappa}$) improves by ~x2 for same integrated luminosity at $\sqrt{s} = 1$ TeV.


κ

- A-priori it should be possible to find additional observables to increase sensitivity, particularly to the chromo-electric dipole moment.
- Caveat: a global analysis at ILC is needed since the gluon energy spectrum is simultaneously sensitive to electroweak dipole moments (from ttγ and ttZ vertices)
- Nice complementarity between LHC and ILC which should be exploited:
 - LHC more sensitive to chromo-electric dipole moment.
 - ILC more sensitive to chromo-magnetic dipole moment.

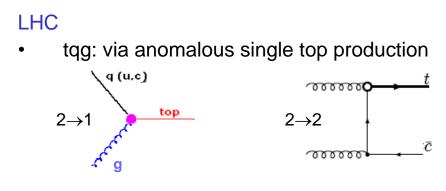
Top Couplings to Gauge Bosons: γ and Z


 ILC: the top pair production rate is directly sensitive to BOTH t-t-γ and t-t-Z vertices.

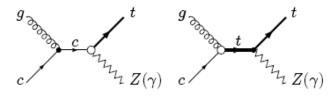
- Polarization is an important tool to disentangle among different couplings:
 - High sensitivity both at threshold (highly polarized top quarks) and continuum
 - Inclusive polarization observables: e.g.

$$A_{LR} = (\sigma_L - \sigma_R) / (\sigma_L + \sigma_R)$$

Angular distributions of final state products



coupling	hep-ex/0 e ⁺	106057 _e	LHC, 300 fb ⁻¹
$\Delta \widetilde{F}_{1V}^{\gamma}$	$+0.047 \\ -0.047$	200 fb ⁻¹	+0.043 -0.041
$\Delta \widetilde{F}_{1A}^{\gamma}$	+0.011 -0.011	100 fb^{-1}	+0.051 -0.048
$\Delta \widetilde{F}_{2V}^{\gamma}$	$+0.038 \\ -0.038$	200 fb ⁻¹	$+0.038 \\ -0.035$
$\Delta \widetilde{F}^{\gamma}_{2A}$	$+0.014 \\ -0.014$	100 fb ⁻¹	$+0.16 \\ -0.17$
$\Delta \widetilde{F}^{Z}_{1V}$	$+0.012 \\ -0.012$	200 fb ⁻¹	$+0.34 \\ -0.72$
$\Delta \widetilde{F}^{Z}_{1A}$	$+0.013 \\ -0.013$	100 fb ⁻¹	$+0.079 \\ -0.091$
$\Delta \widetilde{F}^Z_{2V}$	$+0.009 \\ -0.009$	200 fb ⁻¹	$+0.26 \\ -0.34$
$\Delta \widetilde{F}^{Z}_{2A}$	$+0.052 \\ -0.052$	100 fb ⁻¹	$+0.35 \\ -0.35$


- LHC competitive with ILC for most t-t-γ couplings.
- A-priori precision t-t-Z couplings only possible at ILC.
- Caveat: multi-parameter fits will be required at the ILC to disentangle effects at t-t- γ and t-t-Z vertices (no realistic analysis available).

Top Couplings to Gauge Bosons: FCNC

Best 3^o discovery limits

• $tq\gamma/Z$: via anomalous tV production and $t \rightarrow Vq$ in tt events.

(hep-ph/000	3033)			(ATL-PHYS-PUB-2005-009)
	Tevatron	LHC		
\sqrt{s} (TeV)	2	14		
$\mathcal{L}(\mathbf{fb}^{-1})$	2	100		100
tug	$3.3 imes 10^{-4}$	$3.2 imes 10^{-6}$	$2 \rightarrow 1$	4.3 x 10 ⁻⁴ (decay)
tcg	$3.5 imes 10^{-3}$	2.1×10^{-5}	$2 \rightarrow 1$	4.3 x 10 ⁻⁴ (decay)
$tu\gamma$	3.5×10^{-3}	$3.9 imes 10^{-6}$	tV	、 <i>••</i>
	-	$4.8 imes 10^{-5}$	decay	1.8 x 10 ⁻⁵ (decay)
$tc\gamma$	-	$3.5 imes10^{-5}$	tV	
	-	$4.8 imes 10^{-5}$	decay	1.8 x 10 ⁻⁵ (decay)
tuZ	3.2×10^{-2}	1.1×10^{-4}	tV	
	1.1×10^{-2}	$1.9 imes 10^{-4}$	decay	6.5 x 10 ⁻⁵ (decay)
tcZ	-	$4.8 imes 10^{-4}$	tV	
	$1.1 imes 10^{-2}$	$1.9 imes 10^{-4}$	decay	6.5 x 10 ⁻⁵ (decay)
	-	$6.7 imes10^{-1}$	t t	

95% upper limits

ILC: both anomalous production ($e^+e^- \rightarrow tq$) and decay ($e^+e^- \rightarrow tt$; $t \rightarrow Vq$) can be explored.

hep-ph/0102197

√s = 500 GeV L = 100 fb ⁻¹		$(P(e^{-}), P(e^{+})) = (0, 0)$ No pol. 95% 3σ		$(P(e^{-}), P(e^{+})) = (-0.8, 0)$ Pol. e^{-} 95% 3σ		$(P(e^{-}), P(e^{+})) = (-0.8, +0.0)$ Pol. $e^{-} e^{+}$ 95% 3 σ		.45)		Sensitivity better from production than from decay since, despite the lower	
	$\operatorname{Br}(t \to \gamma q)$				3.3×10^{-5}			tq		S/B, σ is larger.	
					3.2×10^{-4}			decay	•	Beam polarization very useful to improve limits	
	$\operatorname{Br}(t \to Zq) (\gamma_{\mu})$	7.9×10^{-4}	1.2×10^{-3}	7.1×10^{-4}	7.5×10^{-4}	4.4×10^{-4}	4.2×10^{-4}	tq		from production.	
		$5.4 imes10^{-3}$	3.5×10^{-3}	8.0×10^{-3}	2.6×10^{-3}	$6.3 imes10^{-3}$	$2.0 imes 10^{-3}$	decay	•	$\gamma\gamma \rightarrow$ tc would allow to study	
	$\operatorname{Br}(t \to Zq) \ (\sigma_{\mu\nu})$			5-10014368 (1A011) - 50003104	$6.0 imes 10^{-5}$					FCNC with higher σ (~x100	
		$5.7 imes10^{-3}$	$3.7 imes 10^{-3}$	8.3×10^{-3}	2.7×10^{-3}	$6.5 imes 10^{-3}$	$2.1 imes 10^{-3}$	decay		and lower SM bckg.	
				1		•		•			

LHC/ILC complementarity

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.