

Sid Muon System

H. R. Band University of Wisconsin H. E. Fisk Fermilab

Outline

- · Muon DOD
- Common issues
 - Design
 - # Layers
 - Resolution
 - Simulation

- RPC specifics
 - Design
 - Cost
 - R&D
- Scintillator specifics
 - R&D Test Beam
 - Cost

Sid Muon DOD

- SiD
 - 2.3 m flux return ~14 λ + 6 λ(Cal+Sol.)
 - 15 layers
 - Tail-catcher ?

- Modest detector requirements
 - Muon bkgds with spoilers 1.2 10⁻³ Hz/cm² (Mokhov)
 - ~1 cm resolution
- Many technology choices
 - RPCs 3 cm x/y strips -or-
 - Scintillators 4.1 cm x or y planes

10/28/06

Calculated Fields

Modeled as 23 10 cm layers

Assume that flux return needs will determine the total steel thickness needed

10/28/06

H. R. Band - U. of Wisconsin

Barrel Layout

- Assume Octant geometry
 - $\frac{1}{2}$ width covered by staggered gusset plates on each end
 - $2\frac{1}{2}$ width chambers inserted from opposite ends
- # of layers and gap thickness drive outside radius and amount of steel needed

10/28/06

H. R. Band - U. of Wisconsin

A Reference Design

Designs with Tapered Endcap steel save 10-20% of weight

10/28/06

Incremental Costs

• Assuming 2.3 m of steel needed

23 gaps

- study weight + cost versus gap size & # layers

Gap cm	0	3	4	5		3	4
R_out m	5.63	6.32	6.55	6.78	14 gaps	6.05	6.19
Barrel Metric tons	3011	3253	3334	3414		3182	3239
Endcap Metric tons	3776	4758	5111	5476		4360	4564
Total Metric tons	6787	8011	8445	8890		7542	7833

10/28/06

H. R. Band - U. of Wisconsin

R&D - Simulation

- Generic Detector studies -
 - # layers?
 - Position resolution needed to match HCAL tracks?
 - Tail-catcher to aid HCAL?
- Specific technology designs
 - Steel geometry
 - Maximize coverage
- Muon particle ID in Hcal/muon

Simulation Studies

- Hadron rejection
 vs λ C. Milstene
- bb jets at 500 GeV/c in barrel
- Only 3% of tracks > 3
 GeV/c are muons
- Above study used a det. layer every 10 cm
- Extend study for coarser segmentation

H. R. Band - U. of Wisconsin

Purity of "muon" sample improves from 69% to 94% for tracks traversing entire muon system

SiD - RPC Design

• Barrel

- Size ~2.9X5.9 5.6X5.9 m
- With (14 layers) 10 RPCs per layer per octant for a total of 1120 RPCs in the barrel with area of ~ 2500 m².
- Endcaps
 - 54 RPCs in 13 layers per endcap would have 1736 RPCs with a area of 3300 m².
- 5800 m² (13-14 layers) 2500 chambers @ 2-3 m²
- 350,000 channels
- 10⁴ Digitizing chips (KPIX?)

RPCs

- 3 cm pitch ~ 1cm resolution
- XY readout
- Single or double gap?
- Glass or Bakelite ?

			\
Ground plane		.1 mm	↑
Foam		3 mm	
Pickup strips	.1 mm		
PET Fi	.1 mm		
Gr	.1 mm		
	Bakelite	2 mm	
	2mm		
	13 mm total		

H. R. Band - U. of Wisconsin

RPC Chamber = $\frac{1}{2}$ of Octant Layer

Double Gap

Mid-layer Overlap

H. k

Effective Efficiency -RPCs

Single Gap

• Estimate insensitive area

Edge_RPC	0.02	m
Clearance	0.01	m
Gaspipe	0.015	m
Electronics	0.1	m
Length	5.6	m
Corner	0.005	m ²
Efficiency	90	%

Layer 1 8 5.03 3.35 R_avg width 2.78 4.1671 Nominal area 15.542 23.335 0.833 Transverse overlapping 0.555 Transverse nonoverlapping 0 0 Long. Overlapping 0.448 0.448 Long. nonoverlapping 0 0 0.336 0.336 Gaspipe dead overlapping Gaspipe dead nonoverlapping 0 0 0.2 0.2 **Dead Corner overlapping Dead Corner nonoverlapping** 0 0 0.179 0.2126 **Dead Clearance** 0.335 0.503 **Dead Electronics overlapping Total insensitive area** 2.053 2.533 Total sensitive area (2) 0.000 0.000 Total sensitive area (1) 13.488 20.802 0.152 0.122 **Insensitive Fraction** 0.781 0.802 Avg Efficiency

 3
 5.03
 D

 3
 5.03
 D

 1
 4.167
 as

 5
 23.335
 jO

 3
 0.167
 jO

 0
 0.667
 O

 0
 0.224
 O

 0
 0.168
 O

 2
 0.04
 O

 0
 0.168
 O

 2
 0.04
 O

 0
 0.213
 O

 3
 0.503
 O

1.314

20.802

0.056

0.930

Double Gap assume all internal joints are nonoverlapping

10/28/06

Endcap Effective Area -Octant

		Ring	1	2	3	4	5	total/laye
		R_in	0.35	1.5	2.65	3.8	4.95	
		R_out	1.5	2.65	3.8	4.95	6.1	
		L_in	0.290	1.243	2.195	3.148	4.101	
		L_out	1.243	2.195	3.148	4.101	5.053	
		Nominal area	0.881	1.977	3.072	4.168	5.264	15.362
		Transverse overlapping	0.050	0.096	0.096	0.096	0.096	0.433
		Transverse nonoverlapping						0.000
	k	Long. Overlapping	0.031	0.069	0.107	0.145	0.183	0.534
		Long. nonoverlapping						0.000
		Gaspipe dead overlapping	0.037	0.072	0.072	0.072	0.072	0.325
()		Support steel	0.037	0.072	0.072	0.072	0.072	0.325
		Dead Corner overlapping	0.02	0.04	0.04	0.04	0.04	0.180
8.8 C		Dead Corner nonoverlapping						0.000
		Dead Clearance	0.025	0.025	0.025	0.025	0.025	0.124
		Dead Electronics overlapping					0.000	0.000
1	/	Total insensitive area	0.200	0.373	0.411	0.449	0.487	1.921
	1	Total sensitive area (1)	0.681	1.604	2.661	3.719	4.776	13.441
	/	Total sensitive area (2)						
	/	Insensitive Fraction	0.227	0.189	0.134	0.108	0.093	0.125
\ \		Avg Efficiency	69.572	73.013	77.954	80.297	81.665	78.745

10/28/06

				6	Le	eve	els			
			_							
Diha				Sin	gle				Double	•
RIDS									1	1
Vertica	l layer	1	2	3	4	5	6	total/layer	total/layer	
Opper		2.34021	4.0129	0.2	6.2	0.2	4.0129			
Lower		4.01291	11 174	12 914	12 9125	4.0129	7 2070	62 770	62 770	
Horizo	verlapping	0 1/3	0.216	0 2/8	0 2/8	0.216	0 1/3	1 215	1 215	
Horiz n	onoverlanning	0.145	0.210	0.240	0.240	0.210	0.145	0.000	0.000	
Vert O	verlapping	0 265	0 413	0 413	0 413	0 413	0 265	2 183	0.530	
Vert. n	onoverlapping	0.200	0.410	0.410	01410	0.410	0.200	0.000	1.587	
Gaspip	e dead overlapping	0.107	0.162	0.186	0.186	0.162	0.107	0.911	0.911	
Suppor	rt steel	0.107	0.162	0.186	0.186	0.162	0.107	0.911	0.911	
Dead C	orner overlapping	0.06	0.1	0.1	0.1	0.1	0.06	0.520	0.160	
Dead C	orner nonoverlapping							0.000	0.400	
Dead C	learance	0.092	0.129	0.145	0.145	0.129	0.092	0.731	0.731	
Dead E	lectronics overlapping					0.000		0.000	0.000	l
Total ir	sensitive area	0.775	1.183	1.278	1.278	1.183		6.472	<mark>6.446</mark>	l
Total s	ensitive area (1)	6.623	9.991	11.536	11.536	9.991		56.298	1.987	l
Total s	ensitive area (2)								58.312	
10/20/0/	tive Fraction	0.105	0.106	0.100	0.100	0.106		0.103	0.071	17
IU/28/U6 Avg Eff	iciency	80.572	80.473	81.024	81.024	80.473		80.721	0.917	/

RPC Cost Estimates

- Input
 - BaBar \$500/m² (single gap + strips+cables+shipping+(QC?))
 - CMS 500 euro/m² (double gap + strips +cables+electronics)
 - BES III \$230/m² (double gap+strips+enclosure)
 - BaBar LST HV \$50/channel (6kV)
 - CMS HV ~65\$/channel (12kV)
 - 4 KPIX(\$40) &4
 header(\$100)/chamber

- [,] Assume
 - 14 layers(parrel), 13(endcap)
 - 10% spares
- Double gap RPCs
 - $6300 \text{ m}^2 \text{ @ } \$500/\text{m}^2 = 3.2\text{M}\$$
- Electronics
 - 2720 @\$560/chamber = 1.5M\$
- · HV
 - 2720 @ \$100/channel = 0.3M\$
- QC - 2720@ 10 hr/chamber = 1.4M\$
- Gas
 - Guess 1 M\$
 - + Installation & ? 7.4 M\$

10/28/06

H. R. Band - U. of Wisconsin

RPC R&D Issues

- RPCs have proven to be less robust than initially promised
- Many observed failure modes
 - Improperly cured linseed oil
 - Eroded graphite coatings
 - Too much humidity BELLE glass RPCs
 - Too little humidity BaBar bakelite RPCs
- However, extensive R&D has led too a better understanding of aging mechanisms
 - Improved construction techniques
 - Avalanche mode
 - Humidified gas
 - Aging tests to 10 LHC year equivalents
- Will know in several years from the operational experience of CMS, ATLAS, BELLE, BaBar, BESIII if RPCs can be made reliable

10/28/06 H. R. Band - U. of Wisconsin

Status of present streamer mode RPCs

- BELLE glass RPCs doing well after changes to gas plumbing
 - No signs of aging when rates are limited (< 0.2 Hz cm²)
 - Outer endcap layers turned off
- 2nd generation BaBar Bakelite RPCs
 - < 2 Hz/cm² few problems in 4 years
 - >20 Hz/cm² losing efficiency
- BES III installing ~2000 m² of Bakelite RPCs
 - Innovative plastic film surface no linseed oil
 - Prototypes show stable performance

BaBar Efficiency with μ pairs

10/28/06

e

3

2

H. R. Band - U. of Wisconsin

RPC Aging Studies

- BaBar(Wisconsin&Roma)
 - Avalanche mode
 - Fluorine production (HF) & absorption
 - Humidity
 - High Rate effects
- Princeton
 - Avalanche mode
 - Surface quality studies
 - Gas
 - Fluorine production (HF) & absorption
- Bakelite Experience
 - Need glass RPC tests

- Study BES III RPC response to humidity and HF

10/28/06

Scintillator Strip Muon System

- Design
- Prototype in testbeam
 - Details in linked talk
 - Status of Tests
 - ADC Calibration
 - Pulse height Spectra/Min-I Response
 - First data with Italian SiPM
- Scintillator Muon System Cost Estimate

Scintillator

- MINOS style extruded Scintillator strip
- 4.1 cm wide by 1 cm thick
- ±45° to keep lengths short
- Light collected by wavelength shifting fiber
- Coupled to clear fiber on one end
- Readout by Multiple Anode Photo Multipliers (64 channels) mounted outside gap or SiPM inside gap

Prototype Status

- Four (1.25m X 2.5m) prototype modules with 64 strips built at Notre Dame in 2005.
- Planes set up in Fermilab MTest beam (aka MTBF).
 - Test run in February
 - Running resumed from end of June to mid-July and then from mid-August through mid-September.
 - Many problems, mostly DAQ-related, were solved and good data were obtained on pulse height vs. position.

MTest is off for modifications; will return to an operational state in 2007.

Monitoring and Positioning

Beam position is established on the detector planes with horizontal and vertical laser levels. Video monitor and Motor controls for remote adjustment of the cart's position.

96 inch horizontal motion along rail, Hydraulic scissors jack cart has 45 inch vertical travel.

10/28/06

4 Detector planes

Single ended readout

Dual readout

H. R. Band - U. of Wisconsin

Pulse Height Spectrum

10/28/06

H. R. Band - U. of Wisconsin

Measurements

- Position detector so that beam hits particular (+, -) pairs of counters.
- Measure:
 - multiple strips with beam at center or comparable points
 - at different positions along strips.
 - near boundaries between strips
- Also record coincidence rates of each signal with beam with CAMAC scalers.

Schematic Measurement Grid

Circles show points that were measured. Numbers indicate strip numbers 10/28/06 *H. R. Band - U. of Wisconsin*

Scans along strips

H. R. Band - U. of Wisconsin

Italian SiPM Beam Test

A. Driutti and G. Pauletta – INFN Trieste/Udine INFN/Udine test of ITC-Irst SiPM's at SiDet using prototype LC muon scintillator plus WLS fiber. MTest data Sept 2006. 25 x 25 pixels with each pixel 40μ X 40μ Gain = 1.6 x 10^7 ; Noise ~ 0.7 MHz; http://sipm.itc.it

10/28/06

Conclusions - Scintillator

- Collected good sets of test beam data.
- Data collection rate limited to ~40/sec by CAMAC/DAQ. Requires 1-2 hours per 12000 events.
- Plan to replace aging CAMAC system.
- Additional running is planned with Minerva electronics: statistics from all strips?
- Useful information is being derived from our data.

