ILC Physics that Challenges SiD

- An *Incomplete* list of challenging processes
- LHC will be 1st: can guide what will be needed but may have missed something!
- Don't forget the Tevatron New Physics hints

J.Hewett

Long List of Benchmark Processes

	Process and	Energy	Observables	Target	Detector	Notes
	Final states	(TeV)		Accuracy	Challenge	
Higgs	$ee \to Z^0 h^0 \to \ell^+ \ell^- X$	0.35	$M_{recoil}, \sigma_{Zh}, BR_{bb}$	$\delta \sigma_{Zh} = 2.5\%, \ \delta BR_{bb} = 1\%$	Т	{1}
	$ee \rightarrow Z^0 h^0, \ h^0 \rightarrow b\bar{b}/c\bar{c}/\tau\tau$	0.35	Jet flavour , jet (E, \vec{p})	$\delta M_h = 40 \text{ MeV}, \ \delta(\sigma_{Zh} \times BR) = 1\%/7\%/5\%$	V	$\{2\}$
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow WW^*$	0.35	M_Z, M_W, σ_{qqWW}	$\delta(\sigma_{Zh} \times BR_{WW^*}) = 5\%$	С	{3}
	$ee \rightarrow Z^0 h^0 / h^0 \nu \bar{\nu}, \ h^0 \rightarrow \gamma \gamma$	1.0	$M_{\gamma\gamma}$	$\delta(\sigma_{Zh} \times BR_{\gamma\gamma}) = 5\%$	\mathbf{C}	{4}
	$ee \rightarrow Z^{0}h^{0}/h^{0}\nu \bar{\nu}, \ h^{0} \rightarrow \mu^{+}\mu^{-}$	1.0	$M_{\mu\mu}$	5σ Evidence for $M_h = 120$ GeV	т	{5}
	$ee \rightarrow Z^{0}h^{0}, h^{0} \rightarrow invisible$	0.35	σ_{qqE}	5σ Evidence for BR _{invisible} =2.5%	С	{6}
	$ee \rightarrow h^0 \nu \bar{\nu}$	0.5	$\sigma_{bb\nu\nu}, M_{bb}$	$\delta(\sigma_{ u u h} imes \mathrm{BR}_{bb}) = 1\%$	С	{7}
	$ee \longrightarrow t\bar{t}h^0$	1.0	otth	$\delta g_{tth} = 5\%$	С	{8}
	$ee \rightarrow Z^0 h^0 h^0, \ h^0 h^0 \nu \overline{\nu}$	0.5/1.0	$\sigma_{Zhh}, \sigma_{\nu\nu hh}, M_{hh}$	$\delta g_{hhh} = 20/10\%$	С	{9}
SSB	$ee \rightarrow W^+W^-$	0.5		$\Delta \kappa_{\gamma}, \lambda_{\gamma} = 2 \cdot 10^{-4}$	V	$\{10\}$
	$ee \rightarrow W^+W^- \nu \bar{\nu}/Z^0 Z^0 \nu \bar{\nu}$	1.0	σ	$\Lambda_{*4}, \Lambda_{*5} = 3 \text{ TeV}$	С	{11}
SUSY	$ee \rightarrow \tilde{e}_R^+ \tilde{e}_R^-$ (Point 1)	0.5	E_e	$\delta M_{\tilde{\chi}_i^0} = 50 \text{ MeV}$	Т	{12}
	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^- (\text{Point } 1)$	0.5	$E_{\pi}, E_{2\pi}, E_{3\pi}$	$\delta(M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}) = 200 \text{ MeV}$	Т	$\{13\}$
	$ee \rightarrow \tilde{t}_1 \tilde{t}_1 \text{ (Point 1)}$	1.0		$\delta M_{\tilde{t}_1} = 2 \text{ GeV}$		$\{14\}$
-CDM	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^-$ (Point 3)	0.5		$\delta M_{\tilde{\tau}_1} = 1 \text{ GeV}, \ \delta M_{\tilde{\chi}_1^0} = 500 \text{ MeV},$	F	$\{15\}$
	$ee \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi_1^+} \tilde{\chi_1^-}$ (Point 2)	0.5	M_{jj} in $jj \not\!$	$\delta \sigma_{\tilde{\chi}_2 \tilde{\chi}_3} = 4\%, \ \delta (M_{\tilde{\chi}_2^0} - M_{\tilde{\chi}_1^0}) = 500 \text{ MeV}$	С	$\{16\}$
	$ee \rightarrow \tilde{\chi_1^+} \tilde{\chi_1^-} / \tilde{\chi_i^0} \tilde{\chi_j^0}$ (Point 5)	0.5/1.0	ZZĘ, WWĘ	$\delta \sigma_{\tilde{\chi}\tilde{\chi}} = 10\%, \ \delta(M_{\tilde{\chi}}^0 - M_{\tilde{\chi}}^0) = 2 \text{ GeV}$	С	{17}
	$ee \rightarrow H^{0}A^{0} \rightarrow b\bar{b}b\bar{b}$ (Point 4)	1.0	Mass constrained M_{bb}	$\delta M_A = 1 \text{ GeV}$	С	{18}
-alternative	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-$ (Point 6)	0.5	Heavy stable particle	$\delta M_{\tilde{\tau}_1}$	Т	{19}
SUSY	$\tilde{\chi}_1^0 \to \gamma + \not\!$	0.5	Non-pointing γ	$\delta c \tau = 10\%$	С	{20}
breaking	$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi_{soft}^{\pm} $ (Point 8)	0.5	Soft π^{\pm} above $\gamma\gamma$ bkgd	5σ Evidence for $\Delta \tilde{m} = 0.2-2$ GeV	F	{21}
Precision SM	$ee \rightarrow t\bar{t} \rightarrow 6 \ jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \le 10^{-3}$	V	{22}
	$ee \rightarrow f\bar{f} \ (f=e,\mu,\tau;b,c)$	1.0	$\sigma_{f\bar{f}}, A_{FB}, A_{LR}$	5σ Sensitivity to $M_{Z_{LB}} = 7$ TeV	V	{23}
New Physics	$ee \rightarrow \gamma G \text{ (ADD)}$	1.0	$\sigma(\gamma + E)$	5σ Sensitivity	\mathbf{C}	${24}$
	$ee \to KK \to f\bar{f}$ (RS)	1.0	738578 - 1717-88575	22	т	$\{25\}$
Energy/Lumi	$ee \rightarrow ee_{fwd}$	0.3/1.0		$\delta M_{top} = 50 \text{ MeV}$	Т	$\{26\}$
Meas	$ee \rightarrow Z^{0}\gamma$	0.5/1.0		and a second	Т	1273

Battaglia etal

This is a good list!

Reduced List of Benchmarks

0. Single e^{\pm} , μ^{\pm} , π^{\pm} , π^{0} , K^{\pm} , K_{S}^{0} , γ , $0 < \cos \theta < 1$, 0
1. $e^+e^- \to f\bar{f}, f = e, \tau, u, s, c, b \text{ at } \sqrt{s} = 0.091, 0.35, 0.5 \text{ and } 1.0 \text{ TeV};$
2. $e^+e^- \to Z^0 h^0 \to \ell^+\ell^- X, M_h = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV};$
3. $e^+e^- \to Z^0 h^0, h^0 \to c\bar{c}, \tau^+\tau^-, WW^*, M_h = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV}$
4. $e^+e^- \to Z^0 h^0 h^0$, $M_h = 120 \text{ GeV}$ at $\sqrt{s} = 0.5 \text{ TeV}$;
5. $e^+e^- \rightarrow \tilde{e}_R^+\tilde{e}_R^-$ at Point 1 at $\sqrt{s}=0.5$ TeV;
6. $e^+e^- \rightarrow \tilde{\tau}_1^+\tilde{\tau}_1^-$, at Point 3 at $\sqrt{s}=0.5$ TeV;
7. $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_2^0 \tilde{\chi}_2^0$ at Point 5 at $\sqrt{s}=0.5$ TeV;

I have some questions about this: Where is MET + γ , or MET + h, or top? Why $e^+e^- \rightarrow u\bar{u}$?

Precision Tests of the SM: Indirect Signals of New Physics

- Common feature of many models is a contact interaction type signature
 - New gauge bosons, Large extra dimensions, SUSY with Rparity violation, Compositness, Leptoquarks, String excitations....
- Usually arises from exchange of $M_X \gg \sqrt{s}$ in $e^+e^- \rightarrow f\bar{f}$, results in deviations of SM predictions
- ILC has large sensitivity to M_x, covers most of/more than LHC reach
- Determining origin of such deviations is a forte of the ILC!
- Determine spin & couplings of M_X

 Single most important ingredient is angular dependence of final state

Tevatron Check: Dilepton Mass Spectrum

Contributions to Search Reach

There is no single model independent dominant observable! All contributions are potentially important

500 Little Higgs Z' 450 Contribution to χ^2 (f=6.0 TeV, s = 0.95, $M_{A_H}\!\!\rightarrow\infty)$ e+e- -> mu+ mu-400 R(had) $\sigma_{tot}(b)$ -₩₩₩₩ e+e--> cc 1 σ_{tot}(c) -----350 e+e- -> bb $\sigma_{tot}(\tau,\mu)$ -----IIIII ALR σtot(e+e-) 300 ALR(had) $d\sigma/dz(b,c,\tau,\mu)$ 0.8 do/dz(e+e-) AFB (mu) ~× ²⁵⁰ Fraction of total χ^2 $A_{IR}(b)$ AFB(c) A_{I R}(c) -----AFB(b) 0.6 Α_{L R}(τ, μ) -----200 AFB(c) (pol) AIR(e+e-) -AFB(b) (pol) 95% -150 0.4 100 0.2 50 0 0 Z_{ALR} Zγ Z Z_{LR} 04 0.6 0.3 0.5 0.7 0.8 0.9 Godfrey Conley, JLH, Le S

E₆ Z' Models

Full angular dependence in b pairs is important: requires jet-charge measurement

KK graviton exchange $\sqrt{s} = 500 \text{ GeV}, \Lambda = 1.5 \text{ TeV}, 500 \text{ fb}^{-1}$

Clearly a loss of sensitivity when cannot distinguish b from \bar{b}

Full angular dependence in b pairs is important: requires jet-charge measurement

However, this is interesting!

SM and all spin-1 exchange has a constant distribution.

Works for any fermion final state

⇒ Any deviation from a constant value is a measurement of spin ≠ 1 (such as sneutrino or graviton)!!

without jet-charge info

KK graviton exchange

Systematics Dependence of Z' Heavy Quark Coupling Determinations

Analysis uses event rate + full (un+)polarized angular info on heavy quark jets S. Riemann 50 fb⁻¹

Dependence on fiducial volume of vertex detector

Does the New Physics have Generational Dependent Couplings?

When something is discovered, it's a question we will ask

- Will measure generational dependence in leptonic sector, will also want to study quark sector
- We will want to compare top & charm event rates and (un +)polarized angular distributions.
- It would be awfully, awfully nice to compare bottom and strange event rates and (un +)polarized angular distributions as well (e.g., SLD measurement of A_s)

This would give a full check on the theory

Supersymmetry: Some Superdifficult Processes

Some very likely, yet difficult signatures:

- Charm tagging in stop decays (soft charm)
- Small mass splitting between sparticle & LSP
 - Chargino decay
- LSP is only kinematically accessible sparticle

$$e^+e^- \rightarrow \widetilde{t_1} \overline{\widetilde{t_1}} \rightarrow c \widetilde{\chi}_0^1 \overline{c} \widetilde{\chi}_0^1$$

- Stops can be "light" in various SUSY models
 - Off-diagonal matrix element proportional to m_t
- Main decay mode can be through a Flavor Changing Neutral Current – loop decay!

 $stop \rightarrow charm + LSP$

Challenges

C. Milstene

- Vertex detector to tag charm (could be soft)
- Hermiticity (MET)

 $e^+e^- \rightarrow \widetilde{t_1} \overline{\widetilde{t_1}} \rightarrow c \widetilde{\chi}_0^1 \overline{c} \widetilde{\chi}_0^1$

Do we need to pay attention?: Theoretically, this is a very real possibility

 $e^+e^- \rightarrow \widetilde{t}_1 \widetilde{t}_1 \rightarrow c \widetilde{\chi}_0^1 \overline{c} \widetilde{\chi}_0^1$

Do we need to pay attention?: Tevatron check!

D0 analysis:

- Signature is two acoplanar c-jets
- Cuts:
 - Exactly two jets, pT > 40, 20 GeV, dphi<165
 - Quality cuts on mET vs. jet directions
 - At least one jet lifetime tag (c-tag)
 - mET>70 GeV (optimized for each stop mass)

<u>Small Mass Splittings: Degenerate χ_1^{\pm}, χ_1^0 </u>

- As lightest chargino and LSP become degenerate, chargino decay channels change
- Chargino main decay channel can be $\chi_1^{\pm} \rightarrow \pi + \chi_1^{0}, \ \pi\pi + \chi_1^{0}$, with soft pions
- This is main region of parameter space where
 model identification is impossible @ LHC C. Berger etal
- Trigger on γ in $e^+e^- \rightarrow \chi_1{}^{\pm}\chi_1{}^{\pm} + \gamma$ radiative production

Results: Degenerate Chargino/LSP \Rightarrow need to detect soft π 's!

SUSY is Heavy: Radiative Neutralino Production

If LSP is only kinematically accessible sparticle

- $e^+e^- \rightarrow \chi_1^{\ 0} \ \chi_1^{\ 0} + \gamma$ becomes important
- Backgounds:

$$\begin{array}{ll} e^+ + e^- \to \nu_\ell + \bar{\nu}_\ell + \gamma \,, & \ell = e, \mu, \tau \\ e^+ + e^- \to \tilde{\nu}_\ell + \tilde{\nu}_\ell^* + \gamma \,, & \ell = e, \mu, \tau \end{array}$$

Yet another important source of γ + MET with non-pointing γ Challenges Calorimeter for $\delta\theta$, $\delta\phi$

Long-lived/Stable Particles

Many models predict them

- Supersymmetry: Gauge Mediated SUSY Breaking Split Supersymmetry R-Parity Violation
- Heavy fermions with nearly degenerate masses
-

Signatures in the Detector

- particle decay inside detector, timing not coordinated with collision
- jets, leptons, π 's, γ 's appearing from nowhere
- kinks in tracks

Gauge Mediated SUSY Breaking

- High scale hidden (messenger) sector breaks SUSY
- Sparticle masses proportional to gauge couplings
- Gravitino is the LSP with mass ~ few eV
- NLSP typically neutralino or stau and is long-lived

$$\begin{split} \chi_1{}^0 &\to \widetilde{\mathbf{G}} + \gamma/Z \\ \widetilde{\tau} &\to \widetilde{\mathbf{G}} + \tau \end{split}$$

$$\Gamma(\chi_1{}^0/\widetilde{\tau}) = (\mathbf{k}/\mathbf{F})^2 \ (\mathbf{m}_{\chi,\tau}{}^5/16\pi) \ \kappa_{\gamma,Z} \\ \mathbf{k} &\sim \text{messenger coupling} \\ \mathbf{F} &\sim \text{fundamental scale} \\ \kappa_{\gamma,Z} &\sim \text{Clebsch, O(1)} \end{split}$$

Signatures: χ_1^0 , $\tilde{\tau}$ decays inside the detector

Split Supersymmetry:

Arkani-Hamed, Dimopoulos Giudice, Romanino

Gluinos are long-lived

<u>Gluino lifetime</u>:

$$\tau \simeq 8 \left(\frac{m_S}{10^9 \text{ GeV}}\right)^4 \left(\frac{1 \text{ TeV}}{m_{\tilde{g}}}\right)^5 \text{s}$$

ranges from ps to age of the universe for TeV-scale gluinos (Cosmological constraints)

- τ ~ ps, decays in vertex detector
- $\cdot ps < \tau < 100$ ns, decays in detector
- $\cdot \tau > 10^{-7}$ s, decays outside detector \Rightarrow bulk of parameter space!

Gluino Phenomenology

Gluino hadronizes into color singlet R-hadron

~ _	~	~
gqq	gqqq	gg

- R is neutral: energy loss via hadronic collisions as it propagates through detector (Had Cal)
- R is charged: energy loss via hadronic interactions and ionization (Had & EM CAL)
- R flips sign: hadronic interactions can change charge of R, can be alternately charged and neutral! ⇒ ionization tracks may stop & start!
 - Heavy, charged, slow gluinos can stop in the detector due to ionization energy loss
 - Exact calculation of rate highly model dependent!!!
 - Signature: off-line analysis of calorimetric energy deposition, no tracks and not timed to collision

SUSY with R-Parity Violation

- LSP decays
- Superpotential: $W = \lambda LLE^{c} + \lambda'LQD^{c} + \lambda''UD^{c}D^{c}$

 $\Gamma_{\chi}/\Gamma_{\mu} = 10^{20} \ (\lambda/g)^2 \ (m_{\chi} \ /100 \ GeV)^5$

Degenerate Heavy Fermions

- Vector-like fermions naturally degenerate to avoid bounds on STU oblique parameters
- Vector-like fermions contained in many models, e.g., Little Higgs, E₆

Summary: A Theorist's Perspective

- This is our one shot at doing this physics
- We need a detector that can do everything we can possibly dream of
- Nature most likely will have even more surprises in store

Summary: A Theorist's Perspective

- This is our one shot at doing this physics
- We need a detector that can do everything we can possibly dream of
- Nature most likely will have even more surprises in store

A Theorist's Plea: please ensure the GDE doesn't descope the machine. We need to keep the machine in line with the parameters in the consensus document!!!