
Chronopixel development status

Nick Sinev, University of Oregon, On behalf of: C. Baltay, W.Emmet, H.Neal, D.Rabinovich – Yale University, J.Brau, O.Igonkina, D.Strom – University of Oregon

SiD Vertex Layout

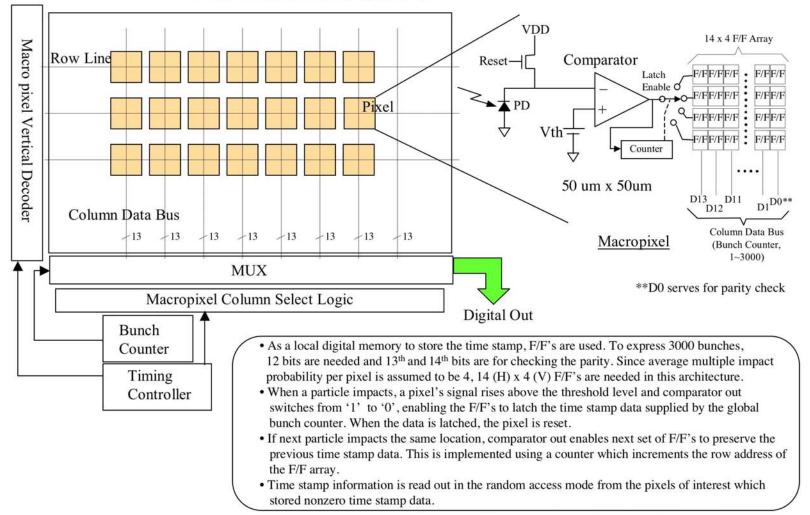
SiD Vertex Detector

BARREL	
--------	--

- 100 sensors
- 1750 cm²

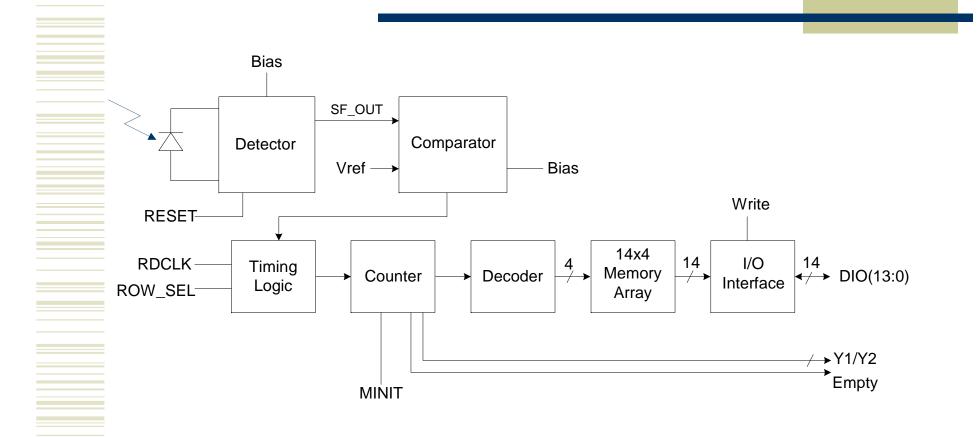
Layer	Radius	Total Length	No. of Chips	Chin Size
Layer		0	rto. or emps	-
	(cm)	(cm)		(cm^2)
1	1.4	12.5	12	$12.5{ imes}1.2$
2	2.5	12.5	24	$12.5{ imes}1.2$
3	3.6	12.5	20	$12.5{ imes}2.2$
4	4.8	12.5	20	$12.5{ imes}2.2$
5	6.0	12.5	24	$12.5{ imes}2.2$

Table I: CMOS Detector Barrel Configuration


Table II: CMOS Detector Forward Disk Configuration

Annulus	Inner Radius	Z	No. of Chips	Chip Size
	(cm)	(cm)		(cm^2)
1	1.6	7.6	24	$1.5{ imes}0.9$
	3.1	7.6	24	4.4×2.2
2	1.6	9.5	24	$1.5{ imes}0.9$
	3.1	9.5	24	4.4×2.2
3	2.0	12.5	24	$1.1{ imes}0.9$
	3.1	125	24	4.4×2.2
4	2.0	18.0	24	$1.1{ imes}0.9$
	3.1	18.0	24	4.4×2.2

FORWARD


- 288 sensors
- 2100 cm²

Macropixel Array Architecture

4

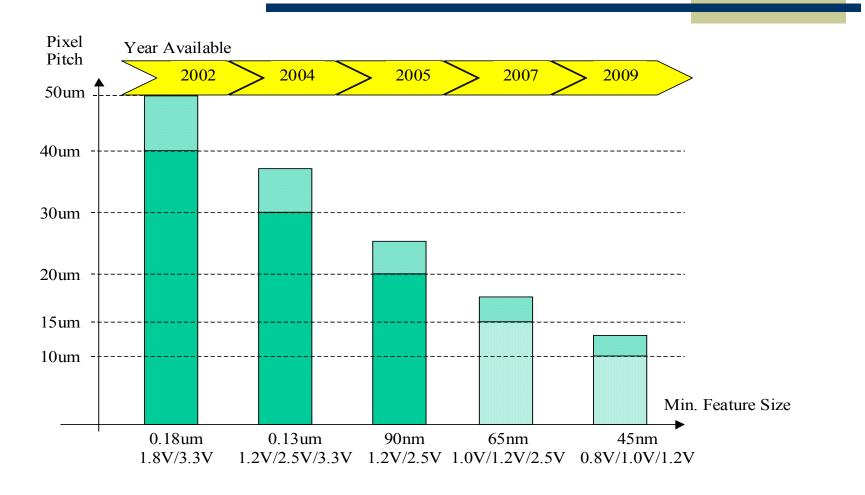
Macropixel Block Diagram

Read Noise

- Minimum ionizing particle leaves ~ 88e⁻ /micron in epitaxial layer
 - 15 um thick epi layer 1% inefficiency threshold 375 e⁻, 50% hit sharing 188 e⁻, noise = $\frac{1}{4} \times 188 = 47 e^{-1}$
- Readout noise scales with pixel capacitance: with 12 μm depletion depth it is 22 fF for 50x50 μm pixels and 3.5 fF for 20x20 μm pixels.
 - Electronics noise estimation for 3.5 $fF 32 e^{-1}$

Power Consumption

Main power consumer is analog part (amplifier + comparator). However, we do not need to keep it all time on. Current estimation for 50x50 μ m design (0.25 μ m technology) 15mW/mm² (without taking into account duty cycle) for analog part and 0.05 mW/mm² for digital part. Assuming duty cycle for analog parts as 1/100 we get ~0.16 mW/mm².


By conservative estimates power per unit of device area will not change by going to smaller pixel size with more advanced technology (goal - 0.045µm feature size by 2010). This is because reduction in capacitance allows smaller current in amplifier.

So, we expect ~ 0.16 mW/mm² x 2500 mm² chip = 0.4 W / chip.

Power Dissipation Analysis

	Component	Optimized Power Dissipation	Before Optimization
	Detector	9.9uW	11.7uW
Analog	Comparator	27.0uW	35.1uW
	Sub_tota1	36.9uW	46.8uW
	Timing Logic	0.05uW	
	Counter/Decoder	0.07uW	
Digital	Mem. Array	$\sim 0 \mathrm{uW}$	
	IO Interface	0.01uW	
	Sub_tota1	0.13uW	
	Total	37.03uW	

SARNOFF Response to Question on Future Technology Roadmap: Macropixel size estimation vs. Mixed-signal Process Technologies

CONCLUSION

- Completed chronopixel design
 - 645 transistors
 - Spice simulation verifies design
 - TSMC 0.18 um -> 40-50 um pixel
- Next phase under consideration
 - Complete design of macro pixel
 - Deliverable –tape out for foundry
- Future
 - Fab 50 um pixel chip
 - Then, 10-15 um pixel