Photons: Energy Resolution and Linearity

Norman Graf

Silicon Detector Calorimetry Meeting October 26, 2006

Analysis

- Can we use simulations to design a detector with good response to photons?
- Start by investigating the intrinsic detector characteristics:
 - Energy linearity
 - Energy resolution
- Analyze the response to single photons.

Simple Geant4 study

- Generate simple sampling calorimeters composed of tungsten-silicon sandwiches.
- Create stacks sufficiently large to contain the full particle showers.
- Vary thicknesses of tungsten and silicon to study the impact on the energy resolution.
- Simulate the response to single photons of varying energy.
- Plot resolution as a function of tungsten and silicon thickness.

Resolution as fn(d_W, d_{Si})

- Generate 400 points in 20 x 20 grid.
- Resolution fits well to the plane:

 $h(x,y) = a^{*}x + b^{*}y + c$

x is the silicon thickness in microns

y is the tungsten thickness in mm

h is the energy resolution in %

With parameters:

a = -0.00614792 +/- 0.0001221 (1.986%) b = 4.57985 +/- 0.03052 (0.6665%) c = 8.02729 +/- 0.08189 (1.02%)

4

Resolution as $fn(d_W, d_{Si})$

Energy Resolution for 1GeV photons

Resolution as fn(d_W, d_{Si})

Si thickness (microns)

Full Simulation Detectors

acme0605

- \square 20 layers of .271cm W (Dens25), 320 μm Si
- 10 layers of .543cm W (Dens25), 320µm Si
- HCal: .75cm W, .5cm scintillator
- acme0605_30layerecal
 - □ 30 layers of .271cm W (Dens25), 320µm Si
- acme0605_40layerecal
 - □ 40 layers of .271cm W (Dens25), 320µm Si
- acme0605_steel_scint
 - □ 20 layers of .271cm W (Dens25), 320µm Si
 - □ 10 layers of .543cm W (Dens25), 320µm Si
 - HCal: 2.0cm Steel, .5cm scintillator

Full Simulation Data Samples

- Generated single particle events with photons at $\theta = 90^{\circ}$ to the beam line, $0 < \phi < 2\pi$.
- Discrete energies: 1, 2, 5, 10, 20, 50, 100 GeV
- Also looked at 250 and 500 GeV samples.
- Apply conservative fixed-cone clustering algorithm to clean up obvious outliers.

Results

- Sampling fractions can be obtained for all the detector designs which provide a linear response for photons with energies between 1 and 100 GeV.
- The energy resolution is only slightly affected by the EM calorimeter designs:
 - □ acme0605: 17.1%
 - acme0605_40layerecal: 16.9%
 - acme0605_30layerecal: 17.2%
 - acme0605_steel_scint: 17.7%

Plots: acme0605 Raw

10

Plots: acme0605 Linearity

Plots: acme0605 Resolution

sigma/√Evs1/E

Plots: acme0605_30layerecal Raw

Plots: acme0605_30layerecal Linearity

Plots: acme0605_30layerecal Resolution

sigma/√Evs1/E

Plots: acme0605_40layerecal Raw

Plots: acme0605_40layerecal Linearity

Plots: acme0605_40layerecal Resolution

sigma/√Evs1/E

Plots: acme0605_steel_scint Raw

Plots: acme0605_steel_scint Linearity

Plots: acme0605_steel_scint Linearity

sigma/√Evs1/E

Summary

- The tools are available to design a system of calorimeters with good energy resolution and linearity of response to photons.
- A default set of sampling fractions can be determined which gives excellent linearity for photons with energies between 1 and 100 GeV.
- The energy resolution and linearity can be improved by introducing energy-dependent sampling fractions.
 - Physical reason for this is that the electromagnetic shower composition changes as a function of energy and longitudinal depth of the shower.
- The baseline silicon detector calorimeters provide an energy resolution of:

 $\sigma/E \sim 17\%/\sqrt{E}$ with ~ 0 constant term.