Design Study of the SiD Detector Solenoid a KEK version

Oct. 27, 2006

K. Tanaka, Y. Makida, A. Yamamoto (KEK) and H. Aihara (Tokyo)

Design Concept

- High Field Compact Solenoid
 - Central field 5 T
 Inner Bore Diameter 5 m
 Length 5 m
- Safety and Protection
 - Stored-energy/cold-mass ratio (E/M) :
 - 15 kJ/kg or less under the conditions of
 - A half energy to be extracted to dump resister in case of quench.
 - Back-up Protection with Quench Protection heater (QPHT)

Progress of AI-stabilized SC

KEK Conductor Design

 A hybrid conductor consisting of Al/Ni-alloy stabilized superconductor supported by High Strength Aluminum shell

NbTi/Cu Cable Design

	CMS	SiD Cable-1	SiD Cable-2
lc (@5T)[kA]	59	66	95
lc (@8T)[kA]		27	38
I-op [kA]	19.5	~26	~26
Strand diameter[mm]	1.28	1.28	1.60
Num. of Strands	32	36	38
B-max[T]	4.6	5.6	5.6
Cable crosssection [mmxmm]	20.68x2.34	23.3x2.34	28.8x2.74
Load Line Ratio		~77%	~70%

Electrical Circuit with quench protection

Progress in E/M Ratio in Detector Magnets

Rough idea about the cost

SC magnet (+cryostat)	~\$50M + \$10M (contingency)
He Cryogenic system	~\$10M + \$2M
Return yoke iron	~7700tons x 1Myen/ton(as of Jun06)=7,700Myen ~\$65M + \$13M
Sum	~\$125M + \$25M

He not included. DID not included.

End

	CMS	SID-1	SD-2
Ic @5T [A]	59000	66000	95000
Ic @87 [A]		27000	38000
I-op [A]	19500	~26000	~26000
Strand Diameter [mm]	1.28	1.28	1.60
Strand Number	32	36	38
Bmax [T]	4.6	5.6	5.6
SC-Cable Dim. [mm]	20.68x2.34	23.3x2.34	28.8x2.74
Load Line Rtio		-77%	~70%

Then

Jc(NbTi) = 2750A/mm2(at 5T, 4, 2K) Jc(NbTi) = 1000A/mm2(at 8T, 4, 2K) Cu/S ratio : 1,0

Jc(strand) = 5000/mm2 (at 87, 4.26) In the case of "Load Line Ratio"=70% Ic (rable) = 38000 Å (at 87, 4.26)

When we have 38 strands

Ic (atrand) = 38000 / 38 = 1000
s = Ic (strand) / Jc (strand) = 1000 / 500 = 2
r =
$$\sqrt{(s / \pi)} = 0.798$$

d = 1.6
(c) Closeresction of strand x ' strand radii

(s : Closs-section of strand, r : strand radius, d : strand diameter)

Design Image in Construction