

Electronics for SiD

Gunther Haller SLAC

Introduction

- For the purpose of this presentation, split into following systems
 - Data-Acquisition
 - Control & timing including configuration readback
 - Dataflow (science data readout)
 - Power
 - Low voltage supplies
 - High voltage supplies
 - Magnet power supplies, control & monitoring (including machine quads)
 - Cryo and Vacuum equipment (~ 1 rack)
 - Safety & health monitoring
 - Temperatures, voltages, etc
 - Others
 - Controls for final quad and beampipe alignment (~ $\frac{1}{2}$ rack)
 - Tracker alignment system ("Frequency Scanning Interferometers") (~ 1/2 rack + opt. table)
 - Machine Inst. & Control that travels with detector (~ $\frac{1}{2}$ rack)
 - Also controls for moving the detector (push-pull) and an altitude adjustment system (~ 1 rack)
- Investigate how much rack-space might be required for
 - Control & Timing
 - Dataflow
 - Power Supplies

Front-End: KPiX

- ASIC (TSMC 0.25um CMOS)
- 1,024 channels (less for some subsystems)
 - Charge Amplifier
 - Discriminator
 - 4-deep analog storage
 - 13-bit ADC
 - Time-stamp
- Readout in 199msec between bunches
 - Serial differential readout of all 1,024 channels via one 20 Mb/s output (< 6 msec)
 - Each channel contains
 - Time-stamp and amplitude of up to 4 samples for each bunch-train

Fast Control and Timing Example

- Fast-Control & Timing Master Crate
 - Contains Fast-Control & Timing Master Module (FCMM) & Processor
 - Receives Timing Signals from Accelerator
 - Executes Finite-State-Machine for Calibration/Run/etc
 - Distributes Command & Timing to Sub-System Crates
- Sub-System Crates
 - One for each Sub-System (for Partitioning Purposes)
 - Each Crate contains Fast-Control & Timing Distribution Module (FCDM) & Processor
 - 4 Fan-Out Modules, Fiber Output to In-Detector Electronics
- In-Detector

٠

- Fan-Out of Control & Timing Signals via Concentrator/Fanout Modules to KPiX ASICs
 - · Modules also include Dataflow Path Electronics
 - Number of Modules driven by Dataflow (might be much less modules, tbd).

Dataflow Example

- In-Detector
 - KPiX Readout via two levels of concentrator boards (FPGA-based, reconfigurable)
 - Readout to On-Top-Of-Detector crates via 2Gbit/s fibers (easy today, faster in the future)
- On-Top-Of-Detector
 - Event-Builder for sub-system (housed in same sub-system crate as FCMM)
 - Event-Builder for complete detector (housed in same crate as FCDM)
 - Processor power not an issue, event-building simple since pre-sorted
- Off-Detector (Stationary)
 - Filter (could also be running in on-detector processors), Online-Analysis, Storage
- For endcaps: a few more IO event-builder modules in crate since occupancy is higher

Number of Crates for Control & Dataflow

Sub-System	# of KPiX (or equivalent)	Mean # Hits/Train	# crates control & dataflow
TrackerBarrel	10,000	36,000	Crate 1
Tracker Endcap	2 * 3,500	250,000	Crate 1
EM Barrel	54,000	38,000	Crate 2
EM Endcap	2 * 18,000	250,000	Crate 2
HAD Barrel	27,000	7,000	Crate 3
HAD Endcap	2 * 10,000	330,000	Crate 3
Muon Barrel	5,000 (64-CH KPiX)	tbd	Crate 4
Muon Endcap	2 * 1,600	tbd	Crate 4
Vertex	tbd	tbd	tbd
LumCal	tbd	tbd	<1
BeamCal	tbd	tbd	<1

• Numbers are all estimates

- For partitioning reasons use one crate for each sub-system (or sub-divide crate in partition)
- Total for control & dataflow: < 10 crates, 2 racks

* Vertex, LumCal, BeamCal are still under investigation

Low-Voltage Power

- E.g. Barrel EMCal Low-Voltage
 - 54,000 KPiX
 - Regulation locally to 2.5V
 - 12-KPiX section: 12 x 20 mW average= 240 mW
 - Concentrator 2 level: 8 * 16 * 240 mW = ~ 30W average
 - Peak power during acquisition at Concentrator 2 with 1W/KPiX for 1 msec: ~ 1.5 kW
 - Assume local storage at concentrator 2 level, assume incoming voltage up to 350V (350V to low-voltage converters are readily available).
 - 35-Channel ~ 4 kW Crate Power-Supply including control
 - < 1 Rack
- Need ~ 1/2 Rack for each sub-system for Low-Voltage
 - ~6 racks
- High-Voltage
 - ~ 50V for EMCal & Tracker
 - ~ few kV for HCAL & Muon
 - ~ 4 racks, mainly for distribution

Space for Racks

- ~ 2 racks for control & dataflow
 - Note that these racks could easily move off-detector via service-loops in the fibers, in other words there racks don't have to move with detector
- ~ 6 racks for low-voltage
- ~ 4 racks for high-voltage
- ~ 4 racks for monitoring
- ~ 4 racks for misc (see earlier slide)
- Total of >~ 20 racks but need 100% margin

Space for Racks

- On 10 m x 10 m can fit ~ 70 racks ($0.6m \times 0.9m$), see below
 - Large margin to ~20 racks from last slide
- For push-pull:
 - Connection to "outside" world are mainly a few AC connections, a few (<10) fibers: easy to connect/disconnect.
 - Plus one needs water quick-disconnects for chiller connections, assuming chillers don't move (unless there is space left on detector).

