Particle Flow Development for Detector Optimization What is a Particle Flow Detector? Recent Progress in PFA Development Some things we have learned PFA Template

Stephen Magill Argonne National Laboratory

Precision Physics at the ILC

- e+e-: clean but sometimes complex events
- often statistics limited
- final states with heavy bosons W, Z, H
- can't ignore hadronic decay modes (80% BR)
 -> multi-jet events
- in general no kinematic fits

A Particle Flow Detector

PFA Goal : 1 to 1 correspondence between measured detector objects and particle 4-vectors -> best jet (parton) reconstruction (energy and momentum of parton)

-> combines tracking and 3-D imaging calorimetry :

Particle Flow Calorimetry

Traditional Calorimetry

Emphasis – particle reconstruction vs E measurement in a volume

Tracking :

good tracking for charged particles (~60% of jet E)
 -> σ_p (tracking) <<< σ_E for photons or hadrons in CAL
 -> Si Strip Tracker

Calorimetry :

good EM Calorimetry for photon measurement (~25% of jet E)

 -> σ_E for photons < σ_E for neutral hadrons
 -> dense absorber for optimal longitudinal separation of
 photon/hadron showers -> Si/W Sandwich ECAL

good separation of neutral and charged showers in E/HCAL

-> CAL objects == particles

-> 1 particle : 1 object -> small CAL cells

- -> SS or W RPC digital CAL, SS or W Scintillator Analog CAL
- adequate E resolution for neutrals in HCAL (~10% of jet E)
 - $-> \sigma_{E} < minimum mass difference, e.g. M_{Z} M_{W}$
 - -> still largest contribution to jet E resolution . . .
 - -> as long as mistakes don't dominate

Jet E Resolution – Confusion Term

Example PFA Construction – mips, photons, charged hadrons, neutral hadrons

The second se				
Allow Fratley	mips	photons	Ch. hadrons	Neu. hadrons
mips	σ_{mip}	$\sigma_{{\sf mip}\gamma}$	σ_{mipch}	σ _{mipnh}
photons	$\sigma_{\gamma mip}$	σγ	$\sigma_{ m \gamma ch}$	σ _{γnh}
Ch. hadrons	σ_{chmip}	$\sigma_{ch\gamma}$	σ_{ch}	σ _{chnh}
Neu. hadrons	σ_{nhmip}	σ _{nhγ}	σ_{nhch}	σ _{nh}

-> Replace mips, charged hadron showers with tracks

-> mip γ , neutral hadron confusion small

So,
$$\sigma_{E}^{2} = \sigma_{\gamma}^{2} + \sigma_{nh}^{2} + \sigma_{conf}^{2}$$

where $\sigma_{conf}^{2} = \sigma_{chnh}^{2} + \sigma_{\gamma ch}^{2} + \sigma_{\gamma nh}^{2}$ (6 terms)

Where we are in PFA Development?

Recent Progress in development of tools for PFA -> Cal calibration methods – standardized method concentrating on photons, neutral hadrons -> PFA Template

Complete PFA analyses - Z-Pole and Beyond -> Have achieved resolutions approaching PFA resolution goal of ~30%/√E -> Have achieved results with non-dominant

-> Have achieved results with non-dominant confusion term

-> Detector variant comparisons have begun

Standardization of Calorimeter Calibration

- EM calorimeter treated as 2 detectors: double the absorber in last 10 layers
- Endcaps treated separately from barrel
- For each detector, 6 subdetector sampling fractions
- Sampling fractions calculated minimizing delta(neutral energy sum)**2 at Zpole
- Results put in detector files, allowing estimate of cluster energy without identification

Photons

- Response reasonably linear
- Calculate linear and constant term for each of 6 subdetectors for each detector, minimizing delta(photon energy sum)**2 at the Zpole

Neutral Hadrons

- For each detector, for each subdetector, map out response for isolated detector at 17 energy points and 3 angles, for k0L, n, nbar
- Average responses assuming 2k0L+1n+1nbar

R. Cassell, SLAC

SSRPC: Event deltaEphoton at Zpole

No cut

Mean 87.4 GeV RMS 7.33 GeV RMS90 4.56 GeV [49%/sqrt(E)] Barrel event (cos(theta[Q]) < sqrt(2)/2)

Mean 88.2 GeV RMS 6.63 GeV RMS90 4.28 GeV [46%/sqrt(E)]

Detector model: SiDaug05_np (non-projective cells) PFA: no change from Vancouver, *except adding E/P check* parameters for clustering, etc. are not tuned yet...

30 layer ECAL, SS/RPC HCAL

PFA need to be tuned/modified for higher energy Much better performance should be possible

Got it last night – so, very preliminary!

PFA Results – Detector, E_{cm} Comparisons

Comparing different detectors

		Correcting for missing energy		Not correcting for missing energy		Corrected for missing		
Detector	CM energy (GeV)	Jet energy (GeV)	rms 90 (GeV)	m90 (GeV)	rms90 (GeV)	m90 (GeV)		
sidaug05	91	45.5	4.42	91.65	4.53	90.22	46% /√E	
sidaug05	200	100	8.33	202.69	9.44	200.73	59%/ √E	
sidaug05	500	250	20.52	501.66	27.75	491.89	92%/ √E	
sidaug05_ scinthcal	9	GeV with scintil 45.5	3.86	90.89	3.93	89.76	40%/√ E	
acme 0605	91.0	45.5	3.95	91.55	4.20	90.40	4 1%/√ E	
acme 0605	200	100	8.21	206.39	9.36	204.40	57%/ √E	
acme0605	500	250	24.06	510.19	30.34	501.67	I07%/√E	

M. Charles, Iowa

PFA Results – Taming the Confusion Term

SiD Detector Model Si Strip Tracker W/Si ECAL, IR = 125 cm 4mm X 4mm cells SS/RPC Digital HCAL 1cm X 1cm cells 5 T B field (CAL inside)

Average confusion contribution = 1.9 GeV < neutral hadron resolution contribution of 2.2 GeV -> PFA goal!*

ANL/SLAC

* other 40% of events!

SiD SS/RPC - 5 T field Perfect PFA σ = 2.6 GeV PFA σ = 3.2 GeV Average confusion = 1.9 GeV SiD SS/RPC - 4 T field Perfect PFA σ = 2.3 GeV PFA σ = 3.3 GeV Average confusion = 2.4 GeV

-> Better performance in larger B-field

Detector Optimized for PFA?

Vary ECAL IR

SiD -> CDC 150 ECAL IR increased from 125 cm to 150 cm 6 layers of Si Strip tracking HCAL reduced by 22 cm (SS/RPC -> W/Scintillator) Magnet IR only 1 inch bigger! Improved PFA performance w/o increasing magnet bore

Summary of some things we have learned so far . . .

Calibration will rely on both test beam and simulation -> Neutrals in test beam? -> Low energy particles Track/Shower matching helped by E/p -> ANL/SLAC, Xia, Charles, Pandora Need to tune PFA for E_{cm}, detector model, physics? Neutral shower = charged shower - mips -> common clustering alg? -> fragment association algorithms -> Test beam implications Use of multiple clustering algorithms -> photon ID example Different algorithms for each particle type – modular PFA -> PFA Template

Comparison of Charged/Neutral Hadron Hits

-> linearity of response

-> charged hadrons generate slightly more hits than neutral -> calibration (#hits/GeV) different, especially at low energy

Mips before showering – charged hadrons lose ~25 MeV per layer in SSRPC isolated detector. (Normal incidence) Try to correct by weighting N hits (N = # of layers traversed before interacting) by .25

Charged(Mip correction)/Neutral Hadron Hits

-> account for mip trace properly
 -> after weighting, #hits charged ~ #hits neutral
 -> shower calibration (#hits/GeV) now very similar

In PFA, find mips first attached to extrapolated tracks, then can cluster remaining hits with same calibration (#hits/GeV) for charged and neutral hadrons*

* remember, this is simulation!

Event - Fraction EM energy ided EM per event

Event - Purity of ided EM energy per event

Use DT for Energy, NN(1,1,1) for ID

Identified EM efficiency

Identified EM purity

PFA Template – Imminent Release

DigiSim (NIU digitization program – threshold, timing cuts, noise, etc) Event Filter -> select regions, other cuts Perfect PFA Calculation -> "perfect" detector objects Collection A to HitMap A conversion (package Ulowa) Track/Mip Trace Algorithm -> Associated Mip Clusters, modified HitMap HitMap B to Collection B conversion (package Ulowa) Clusterer for ECAL hits (input: Collection B, output: clusters) Photon ID Algorithm -> Photons, modified HitMap HitMap C to Collection C conversion Clusterer for ECAL, HCAL hits (input: Collection C, output: clusters) Track/Shower Association Algorithm -> Charged Hadrons, modified HitMap HitMap D to Collection D conversion Clusterer for ECAL, HCAL hits (input: Collection D, output: clusters) Neutral Hadron ID Algorithm -> Neutral Hadrons, modified HitMap Post-processor (input: HitMap E, output: ?)

PFA Module Comparisons

Summary

At ZPole :

- Have approached desired jet energy resolution of
- ~30%/√E
- •Have achieved $\sigma_{confusion} < \sigma_{neutral hadron}$ in PFA energy sum

Have developed huge collection of tools necessary for both PFA development and detector optimization :

- Flexible, fast full simulation packages
- Full reconstruction capabilities
- Standard Calorimeter calibration procedures
- Standardized algorithm comparison tools
- Modular, standardized PFA Template

Next Steps :

- Move from energy sums to dijet mass PFA jet reconstruction
- Move to physics events at 500 GeV CM
- •Use PFAs for detector optimization at 500 GeV

