U.S. FCAL Efforts

William Morse - BNL

FCAL Munich October 17 2006 W.M. Morse

U.S. Interests

- BNL BeamCal, GamCal
- Yale GamCal
- Colorado SUSY studies
- Morse is the SiD forward coordinator
- Have submitted GamCal R&D Proposal to DOE
- Preparing BeamCal R&D Proposal to DOE

U.S. Interests

- BNL PI: W. Morse
- F. Lanni, D. Lissauer: BeamCal readout issues
- Z. Li: radiation damage issues
- B. Parker: machine interface issues
- Yale PI: M. Zeller
- G. Atoian, V. Issakov, A. Poblaguev: GamCal design issues
- Colorado PI: U. Nauenberg: SUSY studies

BeamCal Radiation Damage

- 10MGy/yr from electrons
- 2×10^{14} n/cm² per yr, mainly from giant dipole resonance (10-40 MeV $\gamma N \rightarrow nN^*$)
- Zheng Li (BNL Instrumentation) recommends high resistivity MCZ Si cooled to -10C

SiD 14mr with anti-solenoid

SiD Anti-Solenoid Magnet

- Brett Parker (BNL) design see VLCW06 talk
- Lower B affects pairs and also backsplash to vertex detector

FCAL Munich October 17 2006 W.M. Morse

Fast Feedback

- The ILC fast feedback team requests a signal at 3MHz with low latency almost proportional to actual luminosity for fast optimization
- Comprehensive info at 5Hz to a data base (still to be defined)

Intra-train y + y' IP feedback simulations

Achieving the Design Luminosity Will Be a Challenge

- Bunch P₋(t) {*N*, *E*, *x*, *y*, *z*, σ_x , σ_y , σ_z , σ_{xy} , ψ_x , ψ_y }
- Bunch P₊(t) { $N, E, x, y, z, \sigma_x, \sigma_y, \sigma_z, \sigma_{xy}, \psi_x, \psi_y$ }
- Instantaneous Luminosity:

$$L(t) = \frac{N_+^o N_-^o}{4\pi \sigma_x^o \sigma_y^o}$$

Run Time Measurements

- Beam-beam deflections (pickup electrodes)
- Beam-strahlung gammas (GamCal)
- Beam-strahlung pairs (BeamCal)
- We need robust and complementary information

Beam-strahlung

- $F = e(E + c\beta \times B)$. $B_{max} \approx 1KT$
- Instantaneous power radiated:
- $P_{\gamma} \approx 3\% P_{e}$ $N_{\gamma} \approx 1.5 N_{e}$
- Bethe-Heitler: $\gamma e \rightarrow e \ e^+e^-$
- $\sigma_{BH} \approx 38 \text{ mb}$
- <E> ≈ 1GeV
- Landau-Lifshitz: $ee \rightarrow ee e^+e^-$
- $\sigma_{LL} \approx 19 \text{ mb}$
- <E> ≈ 0.15GeV
- Other processes much smaller
- C. Rimbault et al., Phys Rev ST AB 9,034402 (2006).

Bethe-Heitler Pairs

For left and right detectors separately: $N^+/\sigma_x \sigma_y$ and $N^-/\sigma_x \sigma_y$. Question: How well does this really work? Answer: Needs simulation. FCAL Munich October 17 2006 W.M. Morse

11

Landau-Lifshitz Pairs

Simulations

- W. Morse (BNL)
- W. Lohman, E. von Oelson, and M. Ohlerich (DESY Zeuthen)
- To Be Submitted as an ILC Note
- Guinea Pig simulations varying some of the 500 GeV ILC bunch parameters around nominal values

Vertical offset

Vertical Offset

Bunch Width

Comparison

• Sign of dE/d(bunch characteristic) at design values. Note that all five lines are different, which means complementary information.

Parameter	Pairs	Gammas	Ratio	
X offset	0 (max)	0 (max)	0 (max)	
σz	-	-	≈0	
σ	0 (max)	≈0	0 (max)	
σχ	-	-	-	
Y offset	0 (max)	0 (min)	0 (max)	

FCAL Munich October 17 2006 W.M. Morse

Bunch Height

Bunch Length

Is There More Info in BeamCal?

- T.Tauchi,K.Yokoya
- Phys Rev E51,6119(95)
- 6<*r*<7cm azimuthal dist
- But, Moliere dia. ≈2cm!
- Also, ≈1 Bhabha/BX!
- Thus we need more simulation to show that it is robust enough.

Robust and Complementary

Luminosity, ie. R, is low. Note that all columns are different, ie. complementary information.

Detector	X offset	Y offset	σχ	σ_y
PUE	±x	±y	Normal	Normal
E GamCal	Low	High	Low	Normal
E BeamCal	Low	Low	Low	Low

Large Crossing Angle GamCal

Gas jet followed by a 1m long 1.5T dipole magnetic field. Trajectories of positrons of momentum 0.1, 1, and 10 GeV/c are shown.

GamCal Backgrounds

Conclusions

- We need robust, redundant information:
- Beam-beam deflections
- Beam-strahlung gammas
- Beam-strahlung pairs
- E(pairs)/E(gammas) particularly valuable
- Largely proportional to instantaneous luminosity

Extra Slides

FCAL Munich October 17 2006 W.M. Morse

$$F_1 = \frac{ey}{\varepsilon_0} \left(\rho_2 - \rho_1 + \beta^2 \left(\rho_1 + \rho_2 \right) \right) \approx \frac{2\rho_2 ey}{\varepsilon_0}$$

Perfect Collisions

FCAL Munich October 17 2006 W.M. Morse