

IR Hall Dose Rate Estimates for a "Self-shielding" Detector

T.Sanami, A.Fasso, L.Keller, A.Seryi , S,Rokni SLAC

Oct.19 2006 Physics and Detector R&D

Global Design Effort

1

Motivation

- Dose rate around the detector
 - Shielding and area classification
 - → Size of experimental hall
 - → Design shield between hall wall and detector
 - → Accessible or not during beam operation
 - → Which kind of occupancies?
 - "Effective to cost estimation"
- Whether the detector can act itself as radiation shield or not.

What should we do?

1. Dose rate around the detector

- \rightarrow Effect of gaps for cables and tubes
- → Effect of iron resonance around keV region
- → 3D evaluation of shield between detector and BDS tunnel

2. Design of connection part between BDS tunnel and Exp hall → Effect of tunnel offset and diameter changing

3. Contribution of upstream part → Muon from collimator

We need 3D Monte-Carlo simulation → MARS15-MCNP, FLUKA code are used

Design Goal

[SLAC rule]

• Normal operation :

 \rightarrow 0.05mrem/h (= 0.5 μ Sv/h) for GERT, 0.5mrem/h (= 5 μ Sv/h) for RW

• Miss steering :

→ 400mrem/h (= 4mSv/h)

• System Failure :

→ 25rem/h (250mSv/h) for maximum credible beam loss in any

accessible area

assuming that the BCS devices that limit beam power have failed

[LHC design] (from <u>http://indico.cern.ch/conferenceDisplay.py?confld=1561</u> talk of D. Forkel-Wirth)

- Normal operation :
 - \rightarrow 0.3 mrem/h (= 3µSv/h) for Simple controlled area
 - \rightarrow 0.1 mrem/h (= 1µSv/h) for Supervised area
 - \rightarrow 0.01 mrem/h (= 0.1 $\mu Sv/h)$ for Non-designated area
- Total Beam loss :
 - \rightarrow 5 rem (50mSv) for Simple controlled area
 - \rightarrow 250 mrem (2.5mSv) for Supervised area
 - \rightarrow 30 mrem (0.3mSv) for Non-designated area

[J-PARC design] (from Dr. Nakashima, JAEA)

• Normal operation : (1W/m beam loss assumed for 1MW)

 \rightarrow 1.25 mrem/h (= 12.5 $\mu Sv/h)$ for Controlled area

 \rightarrow 0.025 mrem/h (= 0.25 $\mu Sv/h)$ for In-site

Total Beam loss :

Accelerator stops within 1 sec

by monitoring beam current, beam loss and 1 hour integrated dose rate

	Perfectly modeled	Modeled with simplification	Ignore
GLD (Large detector)	<u>Iron Yoke,</u> <u>Endcap</u>	Beam tube, VTX, BIT, FIT, ET, TPC, <u>ECAL,</u> <u>HCAL,</u> FCAL,BCAL, Cryostat, Mag. Field	Muon chamber
SiD (Small detector)	<u>Iron Yoke,</u> End cap	<u>EMcal, Hadron cal,</u> Solenoid , Mag. field	Vertex Det, Tracker, Muon chmabers

Shield effective part (underlined parts) must be taken into account.

Endcap Tracker, FCAL, BCAL, EM Calorimeter

 \rightarrow W (p=9.9) for >20MeV, W+CH2 (p=9.9) for <20MeV

Hadron Calorimeter \rightarrow Pb(8.88) for >20MeV, Pb+CH2 (ρ =8.88) for <20MeV

Oct.19 2006 Physics and Detector R&D

Use structure and values described in http://confluence.slac.stanford.edu/display/ilc/sid00

Iron Yoke \rightarrow Octagonal shape

EM Calorimeter → W plates 0.275cm x 20layers + 0.50cm x 10layers

Hadron Calorimeter →Fe plates 2.0cm x 34layers

Oct.19 2006 Physics and Detector R&D

- Experimental hall : 30m long 30m width 30m height
 - Tentative, depend on crane size, how to assemble detectors,, etc.
- BDS tunnel and Pacman
 - Tentative, depend on shield design, scheme of detector exchange, etc.

18MW loss Dose attenuation in concrete at 10m from the beam

Oct.19 2006 Physics and Detector R&D

Experimental hall, BDS tunnel and Pacman

and Detector R&D

GLD

Oct.19 2006 Physics and Detector R&D

Global Design Effort

11

Oct.19 2006 Physics and Detector R&D

How many cases ?

Case #	Detector	Target	To check
1	GLD	FCAL	Overall self-shielding capability of detector
2	SiD	LowZ	Overall self-shielding capability of detector
3	GLD	Cu 20X ₀ @BDS	Connection point between BDS tunnel and Pacman
4	If you request		

All dose rates are calculated for 18MW beam loss !

Oct.19 2006 Physics and Detector R&D

Result #1 GLD FCAL hit case

Oct.19 2006 Physics and Detector R&D

Result #2 SiD LowZ hit case

Oct.19 2006 Physics and Detector R&D

Result #3 Beam loss in BDS tunnel

Oct.19 2006 Physics and Detector R&D

ilc

Thickness of Pacman (50 iron+200 conc.)

18 MW loss at z = -800 cm

Oct.19 2006 Physics and Detector R&D

ilc

Thickness of Pacman (120 iron+250 conc.)

18 MW loss on a Cultarget 9 r.l. thick Target position 8 m upstream of IP Pacman thickness 120 cm Fe + 250 cm concrete Dose Rate (mrem/h)

Oct.19 2006 Physics and Detector R&D

ic

Global Design Effort

1.0E+07

3.2E+06

1.0E+06

3.2E+05

1.0E+05

3.2E+04 1.0E+04 3.2E+03

1.0E+03 3.2E+02 1.0E+02 3.2E+01 1.0E-05

Beam loss inside the tunnel

Beam loss inside the tunnel

Oct.19 2006 Physics and Detector R&D

Oct.19 2006 Physics and Detector R&D

Dose Rate (mrem/h) for a 18 MW loss on a Cu target 9 Target position at z = -1410 cm 50 to 70 cm iron shielding in the last 5 m of the tunnel 50 cm transverse iron shielding in Pacman Dose Rate (mrem/h) for a 18 MW loss on a Cu target 9 + Target position at z = -1410 cm 50 to 70 cm iron shielding in the last 5 m of the tunnel 50 cm transverse iron shielding in Pacman Dose Rate (mrem/h) for a 18 MW loss on a Cu target 9 r.l. thick Target position at z = -1410 cm 50 to 70 cm iron shielding in the last 5 m of the tunnel 50 cm transverse iron shielding in Pacman

Oct.19 2006 Physics and Detector R&D

Asymmetrical shield, transverse iron disc between tunnel and Pacman, with loss 2 m upstream

Dose Rate (mrem/h) for a 18 MW loss on a Cu targe Target position at z = -1587 cm 50 to 70 cm iron shielding in the last 5 m of the tuni 50 cm transverse iron shielding in Pacman

Dose Rate (mrem/h) for a 18 MW loss on a Cu target Target position at z = -1587 cm 50 to 70 cm iron shielding in the last 5 m of the tunner 50 cm transverse iron shielding in Pacman Dose Rate (mrem/h) for a 18 MW loss on a Cu target 9 r.l. thick Target position at z = -1587 cm 50 to 70 cm iron shielding in the last 5 m of the tunnel

50 cm transverse iron shielding in Pacman

Oct.19 2006 Physics and Detector R&D

Question: Do muons from sources in the collimation section cause a dose rate problem outside a self-shielded detector?

Plot showing how the 5 m magnetized wall disperses muons from a single source which reach the IR hall

Answer: The estimated dose rate outside a 6.5 m radius detector from all sources, 0.1% collimated halo, both beams, is 0.045 mrem/h – SLAC limit is 0.05 mrem/h

Oct.19 2006 Physics and Detector R&D

Summary

• Normal operation :

0.045 mrem/h muons from BDS collimator sections Contributions from inside of detector and pacman will be small

- \rightarrow less than 1W loss that gives less than 25rem/h / 18x10⁶ = 0.0014mrem/h
- System Failure :

Detector can reduce dose rate less than 25rem/h Pacman is one weak point ← Should be improved !

• Should be performed in near future

Further calculation under the engineering design (More gaps and holes) Consider beam loss scenario in miss-steering case