Summary of MDI and MDI-BDS joint sessions

17 talks and 1 discussion

T. Tauchi, 9th ACFA LC workshop, BILCW07 7 February 2007, Beijing

MDI issues at this workshop I. Beam Parameters Center-of-mass energy and luminosity : F. Richard nominal, lowQ, lowP, largeY,(high lum.) - collimation depth : F. Jackson II. RDR/DCR configuration 7x2 (14)mrad, L*=3.5m, 1 BDS, 2 detectors with push-pull GLD : H. Fujishima SiD : T. Markiewicz LDC : K. Buesser 4th : A. Mikhailichenko MDI in DCR : T. Behnke

(1) Background

Pairs in TPC, VTX and forward calorimeters : GLD, LDC - Track finding efficiency in GLD-VTX : T. Nagamine - LumiCAL, BeamCAL and GamCAL : W. Lohmann Muons and synchrotron radiation - Collimation depth (L*, beam pipes) : F. Jakson (2) IR design and optimization L* = 4.5, 3.5, 4.05 and > 3m, respectively Rin@FCAL and anti-DID : GLD lowZ mask : LDC Beam pipe configuration : GLD, SiD, LCD, 4th (3) Surface assembly - 2 year saving SiD in movie, LDC and 4th

(4) Push pull scheme SiD, LDC, 4th Push pill in RDR : A.Seryi Proposal of "single plat form" for 2 detectors : H. Yamamoto Detector & FD support and stabilization : SiD, 4th (5) Instrumentation Laserwire measurement precision : G. Blair Fast beam feedback system (FONT) : P. Burrows Pair backgrounds at the feedback BPM : T. Hartin Test beam facilities (workshop report) : W.Lohmann III. Permanent magnet option at ILC Final gudrupole and tail folding octupole : Y. Iwashita

IV. MDI at BEPCII

IR design and construction : C. H. Yu SC final focus quadrupole : F. S. Chen

V. Discussion

MDI panel activities ; busy for CCRs - need the panel initiative - need frequent communication with GDE/EC Push pull task force - should continue for the engineering studies Also, discussions on EDR work-packages at the GDE-BDS session.

Highlights

How to optimize the ILC energy for measuring ZH

Philip Bambade, François Richard (LAL/Orsay)

tb/GeV	Rec. Mass	350 GeV
3	in Hµµ	230 GeV
2.5	 	
2	-	
1.5	E E	
1		
0.5		
0 11	8.5 119 119.5 1	20 120.5 121 121.5 122 Mb GeV

Needle plot for mass determination

ECM GeV	σ (Ημμ) fb	Ρμ GeV	σMh MeV	ℒ(30 MeV) fb-1 μμ+ee
350	4.6	83	900	780
230	9.1	54	200	20

Invisible decays

E _{cm} GeV	σ (HZ_{had}) fb (34% eff)	σ(Z _{had} Z _{inv}) Fb ±2σ _{Mh}	o _{Mh} GeV Hadrons	ℒ fb ⁻¹ 95% CL BR _{inv} <2%	⊥ fb ⁻¹ measure BR _{inv} =2±0.5%
350	30	10	7.3 (1C fit)	85	500
230	60	4	2.3 (1C fit)	8	50

If M_h =120 GeV, there are many good reasons to run at ~230 GeV:

- Machine limitation (luminosity, e+ source etc.)? @Ecm=Mh+110GeV

Very Forward Instrumentation of the ILC Detector

Wolfgang Lohmann

Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell. Univ. Cracow, JINR, Dubna, NCPHEP, Minsk, FZU, Prague, IHEP, Protvino, TAU, Tel Aviv, DESY, Zeuthen

Vinča Institute of Nuclear Sciences, Belgrade Royal Holloway, London, BNL, Brookhaven, NY, LAL, Orsay Yale Univ.

No Asian participation at present !

Goal-Design and R&D for:

> Luminosity measurement Goal: <u>Precision ~10⁻⁴</u>

Inner Radius of Cal.:	< 4 μm
Distance between Cals.:	< 60 μ m
Radial beam position:	< 0.7 mm

BeamCal GamCal LumiCal

see: PRC R&D 01/02 (2002)

Beam pipe at FCAL/LumiCAL

GLD IR optimization and background study H.Fujishima (1) anti-DID

Banti^{max}

(2) inner radius of FCAL

Tom Markiewicz

SiD Assembly Movie

İİL

FCAL/QD0 Supported with Door Open

Drop idea of cantilevered support tube

2007.02.06 Beijing ACFA/GDE

SiD MDI

LDC in Underground Hall

4

4-th Concept MDI issues and IP Design

Background in GLD-VTX T,Nagamine Efficiencies for different hit rates

Push-pull with a "single" platform H.Yamamoto

Laser-wire Measurement Precision

Grahame Blair

LW Goal at ILC

Conclude: Essential to measure the spot-size at the few % level or better : $\sigma_y \sim 1$ um

I. Agapov, M. Woodley

Results at ATF Extraction line, Nov. - Dec. 2006

- Wire scanner measurements to confirm optics
 - Electron beam size ~4µm
- Laser scans
 - Laser-electron beam quadrature size ~11.4µm

S. Boogert, L. Deacon

Status of fast beam feedback systems Philip Burrows

Beam test results at ATF (April – November 2006)

Pair backgrounds at the feedbackBPM - ESA tests and simulationsT. Hartin

FONT@ESA run 1 - July06 primary beam directed onto LowZ mask to produce pipe filling spray

2007, insert thin radiator upstream of lowZ mask

ILC Detector Test Beam Worskhop (IDTB07) Fermilab, January 17-19, 2007 W. Lohmann Beam Instrumentation and MDI Talks

• Experiments and plans at SLAC (ESA, Saber) (M. Woods, C. Hast, SLAC)

Energy Spectrometer R&D

(M. Hildreth, U. of Notre Dame)

(C. Clarke, Oxford U.)

Collimator R&D

(A. Sopczak, Lancaster U.) •Experiments at KEK ATF and ATF2 (M. Ross, Fermilab) Very Forward Calorimeter R&D (W. Lohmann, DESY)

Test facilities : ATF/ATF2 at KEK, ESA, SABER at SLAC

Permanent Magnet Option for ILC Final Doublet Quads and Tail Folding Octupole

Interaction region design and construction for BEPCII C. H. Yu

Vacuum chamber will be finished in Apr. The test of superconducting magnets will begin in Jul. Integration and commissioning of BEPCII IR are planed at the end of this year.

The SC magnets for BEPCII **CHEN**, Fusan

made by BNL/SMD

- Coil structure
 - 3 anti-solenoid. 300A / 1300A
 - Main quadrupole. 205A / 580A
 - Main dipole.
 - Vertical dipole corrector. ±40A / ±65A
 - Skew quadrupole.

• Powering configuration

- Anti-solenoids are powered in series with one main PS.
- Two trimming PS are used for current tuning.

Most of the system work

Thank you !