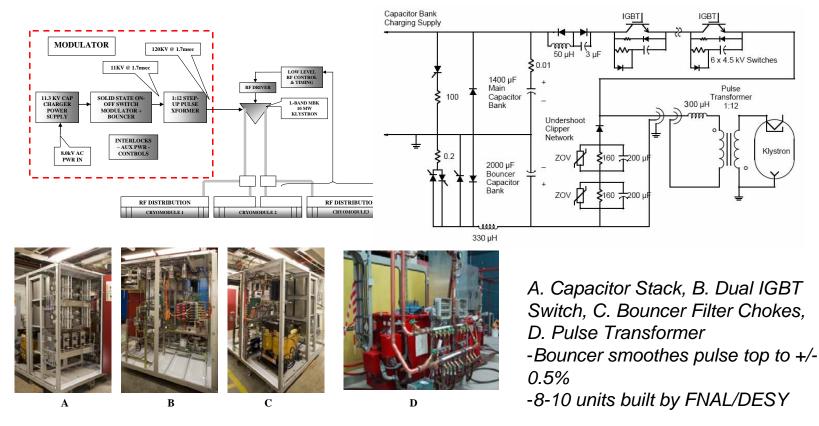
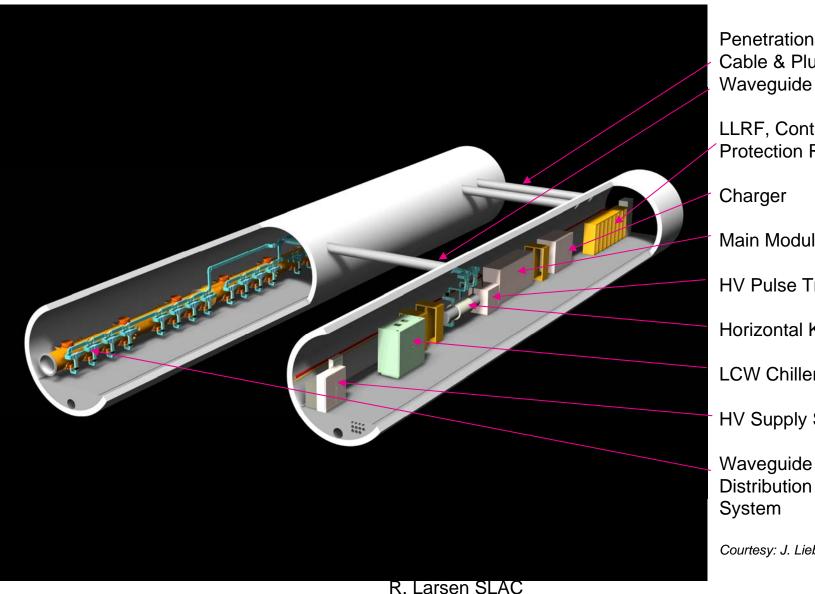
ILC Marx Modulator R&D Status

ILC GDE Meeting IHEP, Beijing, PRC February 6, 2007


Ray Larsen Stanford Linear Accelerator Center

Outline

- I. Baseline Design
- II. Alternate Design: Marx
- III. Progress Report: G. Leyh
- IV. Preliminary Schedule
- V. Summary
- VI Acknowledgment


I. Baseline Design

• 3 large packages: 150 kW Charger, Capacitor-Switch-Bank-Bouncer Modulator and Pulse Transformer

February 2, 2007

Americas Region ILC Baseline: 38m 10 MW Linac RF Station

Penetrations: Cable & Plumbing Waveguide

LLRF, Controls, **Protection Racks**

Main Modulator

HV Pulse Transformer

Horizontal Klystron

LCW Chiller

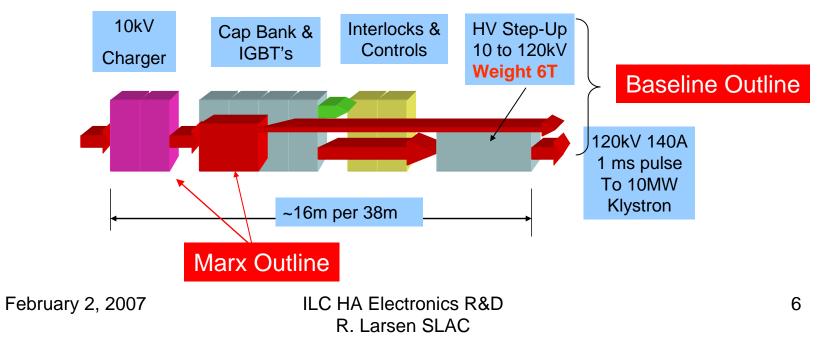
HV Supply Switchgear

Distribution

Courtesy: J. Liebfritz, FNAL 4

Outline

- I. Baseline Design
- II. Alternate Design: Marx
- III. Progress Report: G. Leyh
- IV. Preliminary Schedule
- V. Summary
- VI Acknowledgment

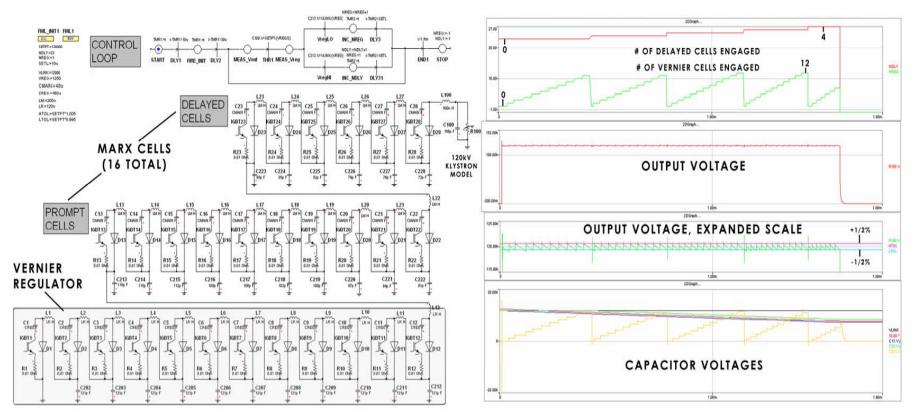

II. Marx Modulator

 Being investigated as alternate design to present switched cap "Bouncer" design

Goals:

Reduce size, weight, space by 3-4X Reduce cost by >2X Increase efficiency Demonstrate operation in 2007. **Specifications:**

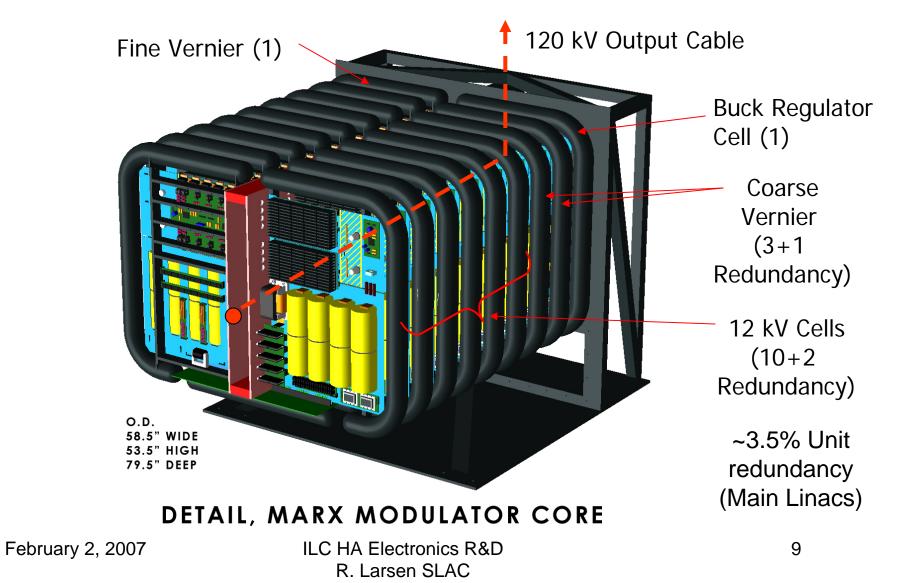
120 kV, 140 A, 1.63 ms, 5 Hz 125 kW output power to klystron Efficiency from wall-plug ~90%

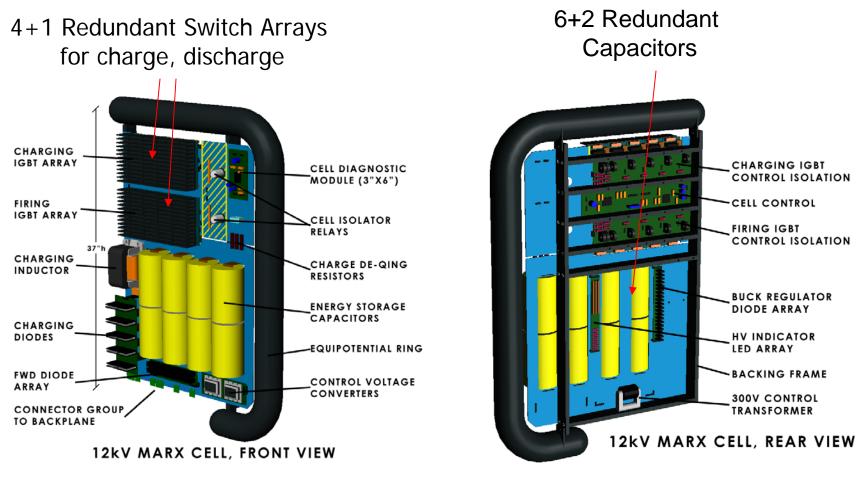

II. Alternate Design Motivation

- Generate HV by stacked switched cells DC coupled; smooth pulse by digitally controlled elements (Vernier); air cooled
- Eliminate oil-filled multi-ton Pulse Transformer
- Reduce total foot print by ~3X, Cost by ~2X
- Modular design with N+1 Cell redundancy for higher Availability, shorter Mean Time to Repair (MTTR)
- N+1 Redundancy at 12 kV cell level, charge and discharge switch level, capacitor level
- Cells air-cooled inside water-cooled enclosure; easier maintenance handling, replacement, off-line repair
- Charge directly from 34.5:8 kV distribution transformer; simple buck regulator cell; eliminate oil-filled charger transformer

[Note: Charger topology may be redesigned further to solve power factor / phase load balancing issues.]

February 2, 2007


II. Marx Conceptual Circuit Design


February 2, 2007

Americas Region

II. Marx Assembly Overview

II. 12 kV Cell Detail

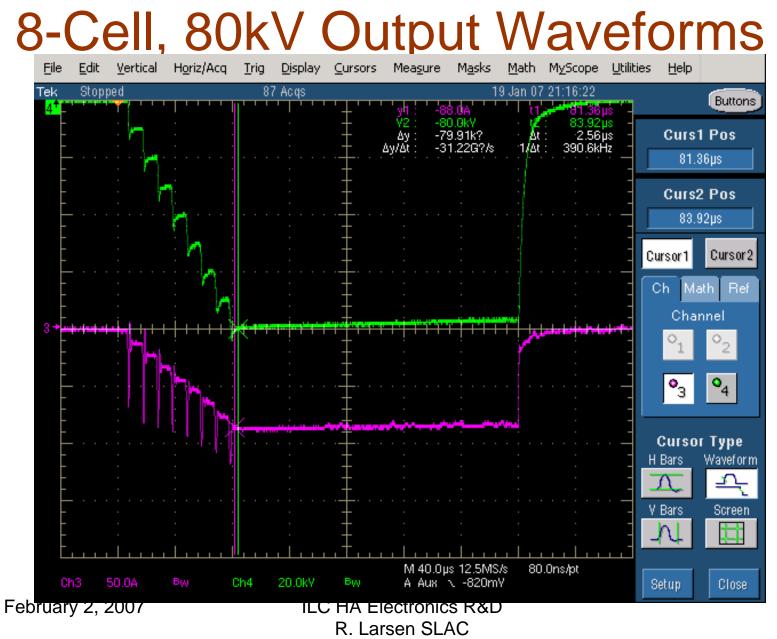
Americas Region I L C International Linear Collider

III. ILC Marx Modulator Progress Report

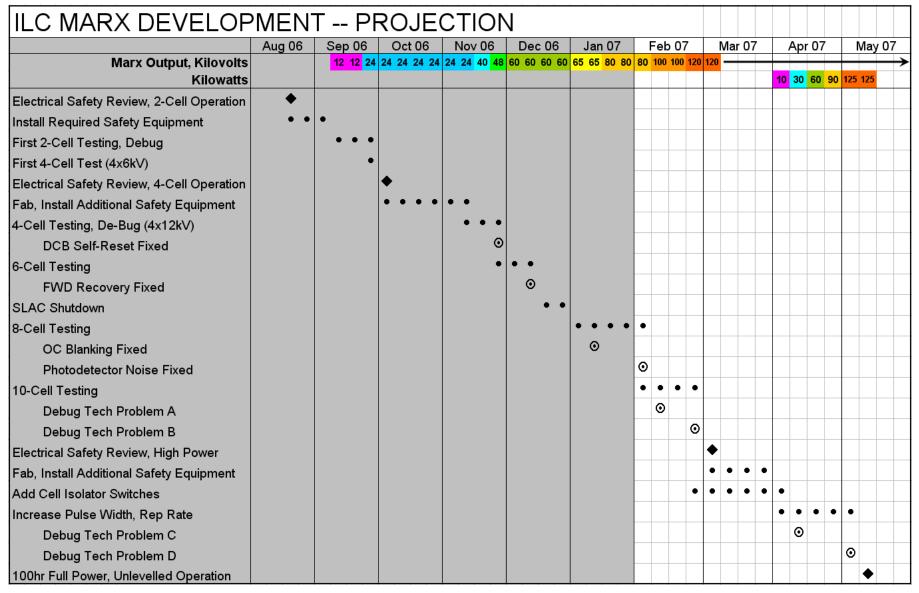
G.E. Leyh, SLAC 29 January 2007

Americas Region

ILC MARX DEVELOF	٩N	1È	Ń	Т	Ρ	R	0	G	R	E	S	S												<u> </u>			
	Jul 06			3 A		ug 06		Sep 06		06	Oct 06			6	Nov 06				Dec 06		Jan 07		'	Feb 0			
Marx Output, Kilovolts								1	2 1	2 24	24	24	24	24	24	24	40	48 6	60	0 60	60	65	65	80	80		
Complete Modulator Frame	•	• •	•																								
Build Marx Test Chamber		• •	•	•	•																						
Install Emanating Cable Plant				•	•	•	•																				
High Power Chargers, Test Load Ready																	•	•									
Electrical Safety Review, 2-Cell Operation						٠																					
Install Required Safety Equipment						•	•	•																			
First 2-Cell Testing, Debug								•	•	•																	
First 4-Cell Test (4x6kV)										•																	
Electrical Safety Review, 4-Cell Operation											•																
Fab, Install Additional Safety Equipment											•	•	•	٠	٠	•											
4-Cell Testing, De-Bug (4x12kV)																•	•	•									
DCB Self-Reset Fixed																		0									
6-Cell Testing																		•	• •								
FWD Recovery Fixed																			0								
SLAC Shutdown																				•	•						
8-Cell Testing																						•	٠	•	•		
OC Blanking Fixed																								0			
Photodetector Noise Fixed																										⊙	
10-Cell Testing																											


Performing Measurements

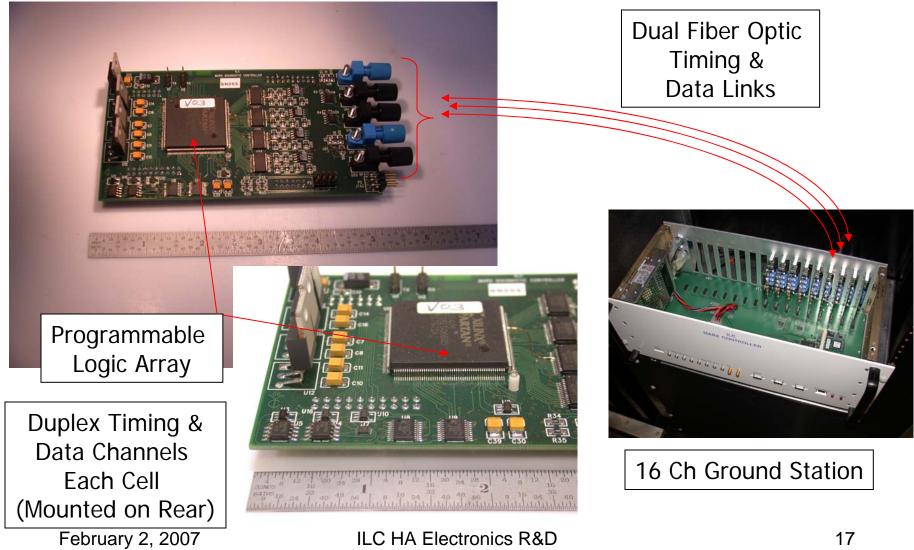
- •Single cell on test stand.
- •Capacitor safety shorting device, long handle
- •Long wait period before handling after shorting.
- •Probe suspended, repositioned for point-to-point measurements


•Very slow process – automated test, maintenance fixtures & procedures need to be developed

Americas Region I L C International Linear Collider

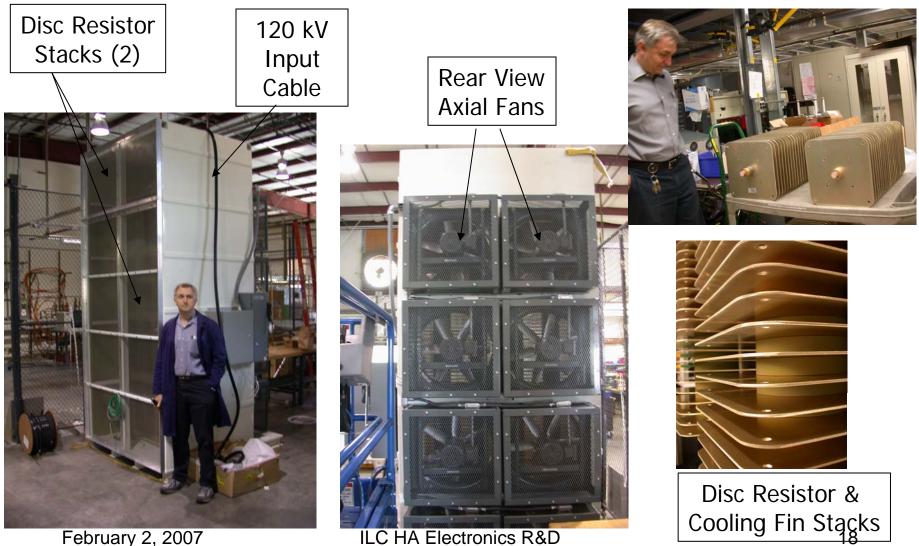
14

LC Americas Region

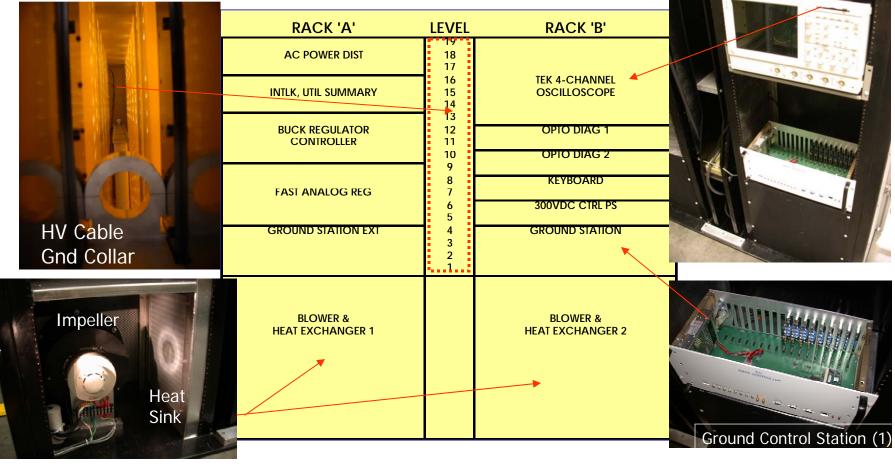

February 2, 2007

Other Accomplishments

- Additional Tasks Completed
 - Diagnostic Controller system
 - 150 kW Charger Supply and Resistive Load
 - Air-water cooled enclosure
 - Second Level Vernier correction box (LLNL)


Diagnostic Controller Details

R. Larsen SLAC



150 kW Air-Cooled load

ILC HA Electronics R&D R. Larsen SLAC

Integrated Instrument Rack Layout - Front View

February 2, 2007

IV. Preliminary Schedule

ID		Task Name	Duration	Start	Finish		2007										2008	3
							Qtr 1	, 2007		Qtr 2	, 2007		Qtr 3	, 2007		ł, 2007	Qtr	1, 2008
	0					Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug Sep) Oct	Nov D	ec Jan	Feb Mai
1		DEMONSTRATION INITIAL OPERATION	254 days	Fri 1/12/07	Wed 1/2/08		-										-	
2		Full Power Demonstration (Unlevelled)	19 days	Fri 1/12/07	Wed 2/7/07		-	-										
11		100 Hour Test	55 days	Fri 1/12/07	Thu 3/29/07		-			•								
21		2000 Hour Test (Phase 1 - B15)	200 days	Thu 3/29/07	Wed 1/2/08				Ţ								-	
31		CELL COMPLETION	13 days	Fri 1/12/07	Tue 1/30/07		-	•										
32		Cells 11-14 Assembly & Test	13 days	Fri 1/12/07	Tue 1/30/07		-	•										
41		VERNIER CELL	97 days	Fri 1/12/07	Mon 5/28/07		-				-	,						
54		BUCK REGULATOR CELL	95 days	Mon 4/2/07	Fri 8/10/07				ļ	_				-				
73		TOOLING	25 days	Fri 1/12/07	Thu 2/15/07		-	-										
75		PACKAGED UNIT FOR ESB INSTALLATION	71 days?	Fri 1/12/07	Fri 4/20/07		-											
76		Package Assembly	71 days?	Fri 1/12/07	Fri 4/20/07		-											
84		Site Preparation	60 days	Fri 1/12/07	Thu 4/5/07	1	-			•								
89		Safety Reviews & Documentation	25 days	Fri 1/12/07	Thu 2/15/07		-	-										
94		Control System Integration	55 days	Fri 1/12/07	Thu 3/29/07	1	-			•								

Note – Preliminary to show remaining tasks, not optimized.

February 2, 2007

LC Americas Region

V. Summary

- Original schedule aiming for HV demonstration by end FY06 and Vernier demonstration by end CY06 not met due to:
 - Initial delays in parts deliveries (IGBTs)
 - Design and implementation of safety features
 - Safety documents, reviews, authorization to proceed
 - Charger design delayed so implemented alternate commercial unit system.
 - Noise problem in DCB limited to 40 kV (fixed).
 - Protection diode problem failure (fixed).
- Subsequently made tests up to 60 kV at low power prior to year end and to 80 kV in January 07
 - Blanking pulse added to CPLD to eliminate noise trips (fixed).
 - Additional problem encountered at 80 kV with noise in optoisolators (being fixed).
 - HV measurements painstakingly slow

February 2, 2007

Summary-2

- Next Steps:
 - Continue debugging to 120 kV at low power
 - Perform short power test (100 hrs) with full charger supply, load
 - Modify design to include new capacitor discharge switches, begin 2000 h test.
 - In parallel Complete Vernier, Buck Regulator Boards. When ready install, test.
 - Complete Full Power 2000 h test on Resistive Load
 - In parallel, prepare End Station infrastructure
 - Install tested unit in air-water cooled enclosure (parts on hand)
 - Move to End Station and install on 10 MW klystron load.

February 2, 2007

VI. Acknowledgment

- The key players in development of the Marx are:
 - Project Engineer, G. Leyh, Power Conversion Dept
 - Associates: Piotr Blum and Alfred Viceral
 - Diagnostic Controller design: J. Olsen, Controls Dept
 - Vernier Board design: Craig Burkhart
 - 2nd Level Vernier design: E. Cook, LLNL
 - 150 kW Air cooled Resistive Load: C. Brooksby LLNL, detailed design and R. Cassel & Co., construction
 - 150 kW Charger system: A. deLira, design & R. Cassel & Co., design & construction

February 2, 2007