

Global Controls: RDR to EDR

John Carwardine For Controls Global Group

Beijing GDE Meeting, February 2007

Global Design Effort

1

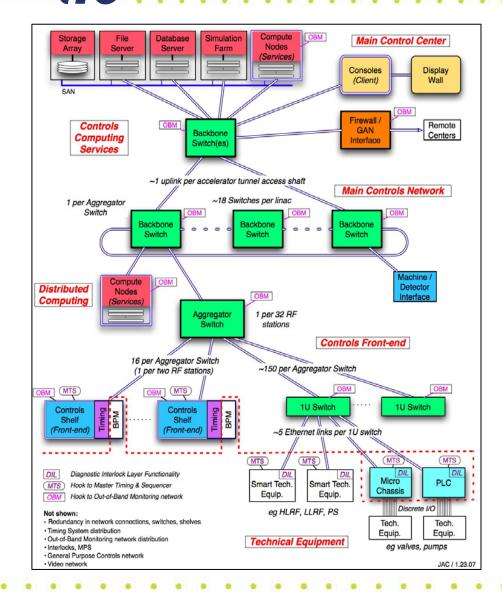
Outline

- Controls Reference Design highlights
- Topic areas to get to EDR readiness
- R&D examples
- Work package examples

Control system challenges

- Scalability
- High Availability
- Extensive reliance on automation and beam-based feedback to run ILC accelerator.
- Synchronous control system operation.
- Precision timing and RF phase distribution.
- Standards, standardization, quality assurance.

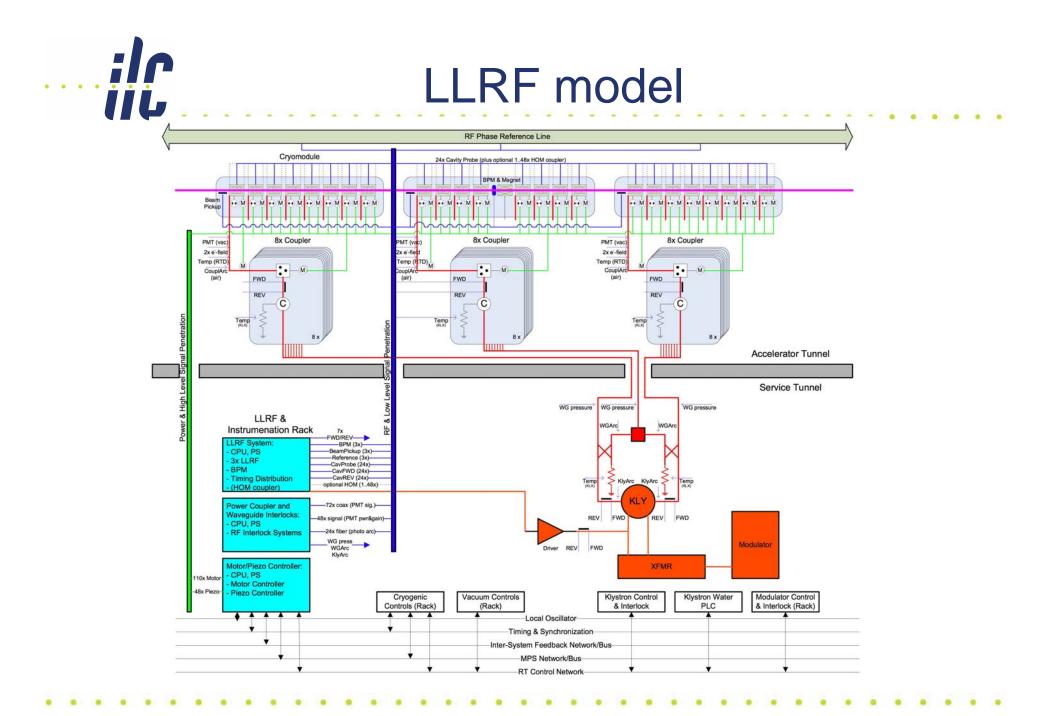
Challenges for RF control


- Vector-sum calibration (Ampl. & Phase).
- Operation close to performance limits.
- Exception Handling.
- Automation of operation.
- Piezo tuner lifetime and dynamic range.
- Optimal field detection and controller (robust).
- Operation at different gradients.
- Defining standards for electronics (such as ATCA).
- Interfaces to other subsystems.
- Reliability.

Brian Chase

Control system RDR model

- Functional model (three-tier model)
 - Front-end: communicate with technical systems.
 - Services: coordination; archiver, databases, etc
 - Client: operator displays, scripting tools, etc
- Physical model
 - Front-end interface to technical systems.
 - Synchronous and general purpose networks.
 - Distributed and centralized processors.
 - Computing, data storage, control room, etc.
 - Pulse-to-pulse feedback infrastructure.
 - Diagnostic Interlock Layer.


Physical model from RDR

Some items of note:

- Physical model identifies some technology (eg ATCA), but is not technology dependent.
- No software framework selected, but we assume derivation from an existing framework.
- Assessments indicate that future 'commodity computing' will meet performance requirements.
- Some design concepts require validation during EDR phase.

İİL

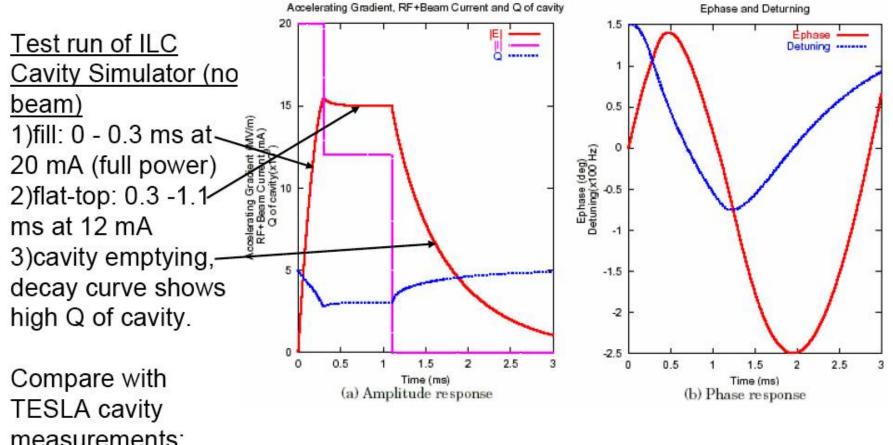
Beijing GDE Meeting, February 2007

Global Design Effort

- Develop RDR models into engineering design.
- Validate/prototype key concepts in RDR models, eg
 - Network architecture.
 - Front-end model, technical system interfaces.
 - Synchronous 5Hz feedback infrastructure.
 - Standards, standardization, QA.
 - Diagnostic Interlock Layer.
- Perform targeted R&D where it is needed, eg
 - RF field regulation (phase & amplitude).
 - High availability implementation.
 - Fault detection and recovery.
- Controls & LLRF support for test facilities.

- R&D objectives and model validation tasks for EDR are broadly understood.
- Initial list of specific work packages have been developed as part of the Americas region planning.
- Need to develop a more comprehensive list of specific tasks to get to EDR readiness.

LLRF R&D from S2 tasks


- Heavy focus on accomplishing S2 tasks, including
 - Test beam-based feedbacks.
 - Develop RF fault recognition & recovery software.
 - Check beam phase and energy stability.
 - Demonstrate to us and the world that we can make an RF unit to spec.
 - Understand RF control issues in a system with many cavities and cryomodules distributed over a large physical space.
- LLRF R&D is dependent on beam-based test facilities. Strong LLRF development focus at ILCTA, XFEL,...
- Test facilities require Controls and LLRF infrastructure.

- RF Field Regulation
 - Maintain Phase and Amplitude of the accelerating field within given tolerances to accelerate a charged particle beam to given parameters
 - up to 0.5% for amplitude and 0.03 deg. for phase
- Minimize klystron Power needed for control
 - RF system must be reproducible, reliable, operable, and well understood.
 - Active Piezo tuner feedback system
 - HINS- Fast Ferrite Vector Modulator control
- Other performance goals
 - build-in diagnostics for calibration of gradient and phase, cavity detuning, etc.
 - Interface with Machine Protection, exception handling capabilities
 - meet performance goals over wide range of operating parameters

Brian Chase

Real Time Cavity Simulator

measurements: Shapes are similar, model is working.

IF in these simulations is 50 MHz.

Justin Keung, UPenn

Beijing GDE Meeting, February 2007

Global Design Effort

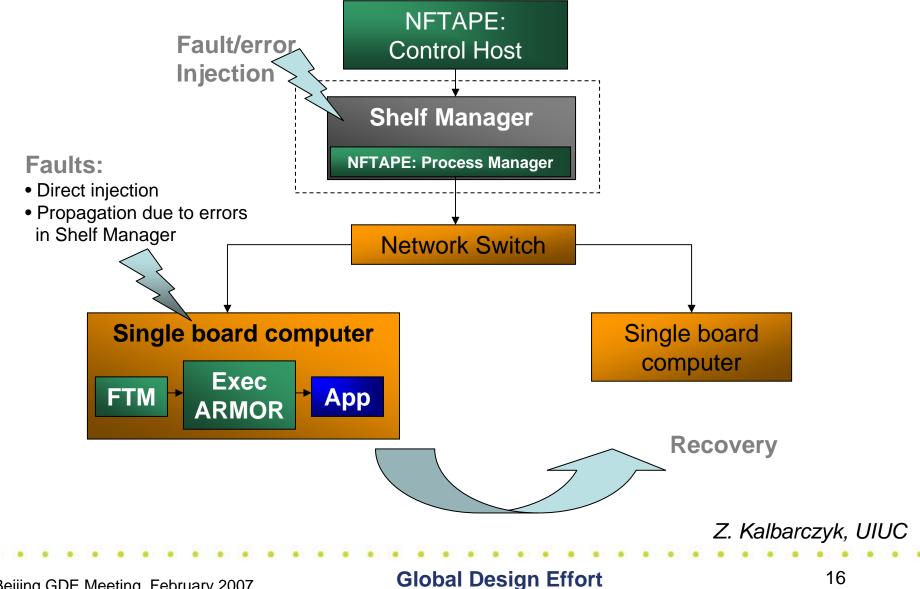
- HA is a requirement for all the technical systems.
- Need to investigate techniques, implications, and costbenefit for meeting reliability requirements.
- Control system hardware & software are both impacted.
- Methodology component:
 - Design techniques, robust design.
 - Quality Control / extensive testing.
 - Standardization.
- Engineering component:
 - Reliably detect and then recover from faults.
 - Introspection, diagnostic tools,...
 - Redundancy, hot spares, remote power on/off,...

Some ongoing HA activities

- Implement bpm electronics in ATCA crate (Fermilab).
- Implement Simcon board in ATCA crate (DESY).
- Redundant I/O controller for XFEL cryo-plant control system (DESY).
- Investigate I/O controller fail-over techniques using EPICS on ATCA (ANL).
- Study Shelf Manager operation and implementation (Univ. Illinois, UC).
- Diagnostic processor for Marx modulator (SLAC).

ATCA hardware test setup

- Shelf manager
- 2xIntel Blade
 - Dual Xeon processors
 - Three watchdogs
 - Redundant embedded BIOS
 - Hotswappable
- Switch: ZNYX ZX5000
 - Layer 2 switching and layer 3 routing
 - 16 ports 10/100/1000
 Mbps Ethernet
- Host PC: server



Shifu Xu, ANL

Beijing GDE Meeting, February 2007

Global Design Effort

Beijing GDE Meeting, February 2007

High Availability in EPICS

- Functions to implement redundant IOCs in EPICS are being developed for XFEL cryo-system (M. Clausen)
 - Redundancy Monitor Task.
 - Continuous Control Executive Task.
- EPICS has been ported to ATCA under linux-ha, and two incremental steps demonstrated (Shifu Xu)
 - Live migration of EPICS IOC running on one ATCA processor to another ATCA processor.
 - Auto fail-over from an active IOC running on one ATCA processor to a backup IOC on another processor without loss of connection to external process.

WP example: HA control systems

- Investigate high availability design approaches, implications, and cost-benefit for the ILC control system.
- Example work package items:
 - Develop & evaluate controls failure modes and machine impact.
 Determine priorities for meeting overall availability.
 - Explore techniques such as virtual machine migration (Xen), clustering (heartbeat), redundant I/O controllers, etc. using [EPICS, DOOCS, Tango, ...] on ATCA.
 - Evaluate and prototype second-tier HA techniques, eg: automated diagnosis, configuration management, coding standards.
 - Build vertical demonstration of all tiers of control system with HA techniques applied. Perform fault injection to test and evaluate.
 - Evaluate and prototype "Shelf-manager' functionality in control system infrastructure for technical system fault management.

WP example: ATCA evaluation

- Investigate suitability of ATCA as a high availability compliant electronics platform for ILC control system.
- Example work package items:
 - Prototype a precision instrumentation digitizer for beam position monitors. Evaluate analog & digital performance.
 - Prototype electronics functions to the AMC mezzanine card, and integrate with the IPMC diagnostic module. Write software drivers.
 - Evaluate cabling options for ATCA and AMC cards
 - Port [EPICS, DOOCS, Tango,...] to the ATCA platform, integrate and evaluate "Shelf Manager" functionality.

WP example: diagnostic processor

- The diagnostic processor (DP) is conceived as the key element in the Diagnostic Interlock Layer (DIL).
- Work package example items:
 - Continue development of DP hardware for Marx and 4+1 supplies. Develop generic family of DP hardware (including chip-level) suitable for integration into various technical systems.
 - Develop on-board software to integrate DP with IPMIbased relay rack monitoring. Client software will be developed/acquired to provide a uniform management interface to all relay racks based on current standards.

WP example: RF phase distribution

- Perform essential R&D on distribution techniques for the 1300 MHz timing distribution system.
- Example work package items:
 - Investigate & evaluate strategies for phase stabilizing long fiber links modulated at 1.3 GHz.
 - Demonstrate critical time of arrival stabilization at a dummy Interaction Point using NML beam test facility.
 - Investigate feasibility of using a beam-derived reference for locking a local phase reference.
 - Prototype a redundant phase reference receiver with decision logic to auto-switch upon detected failure.

Summary

- RDR models for Controls and LLRF provide a starting point for the EDR phase.
- Top level goals and topic areas for EDR are known.
- Initial set of work packages has been developed.
- Must develop a more thorough list of topics and work packages needed to get to EDR readiness.