

SiD MDI Issues

Tom Markiewicz/SLAC Beijing ACFA/GDE Meeting 05 February 2007

Issues : No Definite Solutions

Surface Assembly and Underground Halls **Space and Crane Requirements Detector Access Model in Push-Pull Scheme QD0** cryostat and support Anti-Solenoid **Liquid Helium Supply** "R20" detector package- Support and Alignment Model **Beampipe and VXD Forward Tracker** Lumical, Beamcal & Masks Not Covered Today **Detector Shielding Model DID & Solenoid Field** Calibration Scheme in Push-Pull **Background Simulations**

SiD MDI

Sequence of Operations

- Detector subassembly construction & surface tests
 - Octants of muon chamber instrumented barrel yoke, barrel Hcal, barrel Ecal
 - Four sub-modules of EC return flux instrumented with muon chambers, donut Hcal, Ecal
 - Tracker, vertex and FCAL packages
- Surface Magnet test
 - Assemble barrel support and the bottom 5/8 flux return octants
 - Drop in coil & cover with remaining 3/8 octants
 - Assemble two door legs and 4 360° (180 °?) plates of flux return
 - Test magnet and disassemble
- Lower detector
 - Reassemble lower barrel with supports below ground
 - Load barrel HCAL and ECAL modules into coil cryostat via threaded beam
 - Lower loaded coil package and capture with upper barrel yoke segments
 - Depending on crane capacity
 - Lower fully assembled door
 - Lower door pieces, the last plate with the Endcap Ecal & Hcal, and reassemble
- Tracker, VXD and FCAL installed below ground at last minute

A Surface Assembly Scenario for SiD M. Breidenbach -1 August 2006

M-Tons	Stainless HCAL Radiator		Tungten HCAL Radiator	
	Barrel	Endcap x2	Barrel	Endcap x2
EM Cal	59	19	59	19
HCAL	354	33	367	46
Coil	160		116	
Iron	2966/8= 374.5	2130/4= 532.5	1785/8= 223.125	1284
Support x 2 (each ~5%Fe)	150	110	90	65
Total to Lower	Loaded Coil=573	Assembled Door=2402	Loaded Coil=542	Assembled Door=1479
Shaft Diameter(m)	8.3m	10.4+2.0m		

Pre-Push Pull, 20mrad crossing angle, L*=3.5m Final Doublet Support and Access Plan

- One cryostat with radial step support tube with corresponding step
- Cryostat step @ z=4.8m: door can open 2m; radii from BNL

Theta	OD1	OD2	
14 mrad	290mm	477mm	
20mrad	305mm	512mm	

- Tube cantilevered from removable base just behind closed end cap door
- Full coverage endcap Ecal/Hcal @ r>20cm
- Forward instrumented steel return flux cut back ~10cm to clear step in cryostat when door open
- Antisolenoid cryostat begins at r=30cm

SiD Final Doublet Support and Access Plan with Push Pull @ 14mrad Crossing angle, L*=3.51m

- Three concepts
 - Drop idea of cantilevered support tube
 - QD cryostat and FCAL package supported off rails in endcap doors
 - Rails incorporate **telescoping** "**rail extensions**" to support cryostat and FCAL when door is open
 - Permanent liquid He feed line from barrel to QD0 with loop large enough to allow 3m door opening
 - 5cm (?) radial cutback in endcap door iron to allow it to pass over QF1 cryostat with antisolenoid cryostat beginning at r=30cm

SiD MDI

SiD MDI

R20 Tracking, Beam Pipe and FCAL Details Need Consistency Check

- In my personal view handshake between Tracker people, VXD people, FCAL people, Recon people, Management people and MDI people not made yet
- VXD cryostat now a CF support tube hanging from Beam Pipe and in turn supporting VXD Barrel and 7 endcap layers
 - Who supports beampipe?
- FCAL interplay with Forward tracking and Beampipe not globally resolved
- Interference between forward tracker & FCal during VXD access
- No conceptual solutions yet for Flanges, Bellows, Alignment, Cable and Cold Gas Access
- All Good Topics for SiD April 9-11 Collab Mtg @ Fermilab

SiD MDI

12mm Beam Pipe and VXD Detail

2007.02.06 Beijing ACFA/GDE

SiD MDI

SiD Open for Access to the VXD Region

Elevation & Plan Views of Far-Lumi/BeamCal

