Unique Higgs boson signature @ colliders hep-ph/0611270

朱守华 Shou-hua Zhu 北京大学理论物理研究所 ITP, Peking University 2007/2

1. Where is Higgs boson?

Not found yet!

LEP direct search told us $m_H>114.4~GeV@95\%~CL$ in the SM

Alternative approach!

Higgs boson small quantum fluctuations effects can be measured dedicated experiments.

W/Z, W/Z

It is claimed that one-Higgs-SM works well with data from LEP, Tevatron, SLC... hep-ex/0509008

 $m_t = 174.3 \pm 3.4 \text{ GeV}$

$$m_H = 98^{+52}_{-36} \text{ GeV}$$

 $m_H < 208 \text{ GeV at } 95\% \text{ CL}$

2. One puzzle?

$Z \rightarrow \bar{b}b$ Decay Asymmetry: Lose-Lose for the Standard Model

Michael S. Chanowitz

PHYSICAL REVIEW D 66, 073002 (2002)

Electroweak data and the Higgs boson mass: A case for new physics

Michael S. Chanowitz*

TABLE IV. Results for global fits A-D and for the corresponding fits restricted to m_H -sensitive observables, A'-D'.

	All	$-x_W^{OS}[\stackrel{(-)}{\nu}N]$
All	${f A}$	В
	χ^2 /=27.7/13,C.L.=0.010	18.4/12, 0.10
$-x_W^l[A_H]$	C	D
	17.4/10, 0.066	6.8/9, 0.65
m_H -sensitive only		
All	\mathbf{A}'	\mathbf{B}'
	24.3/8, 0.0020	15.2/7, 0.034
$-x_W^l[A_H]$	\mathbf{C}'	\mathbf{D}'
	13.8/5, 0.017	3.45/4, 0.49

TABLE V. SM fit D, to minimal data set, with $x_W^{OS}[\stackrel{(-)}{\nu}N]$ and three hadronic asymmetry measurements excluded.

	Experiment	SM fit	Pull
A_{LR}	0.1513 (21)	0.1509	0.2
A_{FB}^{l}	0.0171 (10)	0.0171	0.0
$A_{e, au}$	0.1465 (33)	0.1509	-1.4
m_W	80.451 (33)	80.429	0.7
Γ_Z	2495.2 (23)	2496.1	-0.4
R_l	20.767 (25)	20.737	1.2
σ_h	41.540 (37)	41.487	1.4
R_b	0.21646 (65)	0.21575	1.1
R_c	0.1719 (31)	0.1722	-0.1
A_b	0.922 (20)	0.9350	-0.7
A_c	0.670 (26)	0.670	0.0
m_t	174.3 (5.1)	175.3	-0.2
$\Delta \alpha_5(m_Z^2)$	0.02761 (36)	0.02761	0.0
$\alpha_S(m_Z)$		0.1168	
m_H		43	

TABLE VII. Confidence levels and Higgs boson mass predictions for global fits A–D. Each entry shows the value of m_H at the χ^2 minimum, the symmetric 90% confidence interval, the χ^2 confidence level, the confidence level for consistency with the search limit, and the combined likelihood P_C from Eq. (1.1).

	All	$-x_{W}^{OS}[\stackrel{(-)}{\nu}N]$
All	A	В
	$m_H = 94$	$m_H = 81$
	$37 < m_H < 193$	$36 < m_H < 190$
	$CL(\chi^2) = 0.010$	$C I.(\chi^2) = 0.10$
	$C.L.(m_H > 114) = 0.30$	$C.L.(m_H > 114) = 0.26$
	$P_C = 0.0030$	$P_{C} = 0.026$
$-x_W^l[A_H]$	C	D
	$m_H = 45$	$m_H = 43$
	$14 < m_H < 113$	$17 < m_H < 105$
	$C.L.(\chi^2) = 0.066$	$C.L.(\chi^2) = 0.65$
	$C.L.(m_H > 114) = 0.047$	$C.L.(m_H > 114) = 0.035$
	$P_C = 0.0031$	$P_C = 0.023$

FIG. 14. Electroweak schematic diagram.

3. Then came the HyperCP 3 exotic events in 2005...

Evidence for the Decay $\Sigma^+ \rightarrow p \mu^+ \mu^-$

H. K. Park, R. A. Burnstein, A. Chakravorty, Y. C. Chen, W. S. Choong, R. Clark, E. C. Dukes, C. Dukes, C. Durandet, D. Felix, Y. Fu, G. Gidal, H. R. Gustafson, T. Holmstrom, M. Huang, C. James, C. M. Jenkins, T. Jones, D. M. Kaplan, L. M. Lederman, N. Leros, M. J. Longo, R. F. Lopez, L. C. Lu, W. Luebke, K. B. Luk, C. K. S. Nelson, J.-P. Perroud, D. Rajaram, H. A. Rubin, J. Volk, C. G. White, S. L. White, and P. Zyla

(HyperCP Collaboration)

We report the first evidence for the decay $\Sigma^+ \to p \mu^+ \mu^-$ from data taken by the HyperCP (E871) experiment at Fermilab. Based on three observed events, the branching ratio is $\mathcal{B}(\Sigma^+ \to p \mu^+ \mu^-) = [8.6^{+6.6}_{-5.4}(\text{stat}) \pm 5.5(\text{syst})] \times 10^{-8}$. The narrow range of dimuon masses may indicate that the decay proceeds via a neutral intermediate state, $\Sigma^+ \to p P^0$, $P^0 \to \mu^+ \mu^-$ with a P^0 mass of 214.3 \pm 0.5 MeV/ c^2 and branching ratio $\mathcal{B}(\Sigma^+ \to p P^0, P^0 \to \mu^+ \mu^-) = [3.1^{+2.4}_{-1.9}(\text{stat}) \pm 1.5(\text{syst})] \times 10^{-8}$.

Theoretical investigations:

- [10] X. G. He, J. Tandean and G. Valencia, Phys. Rev. D 72, 074003 (2005).
- [11] X. G. He, J. Tandean and G. Valencia, Phys. Lett.
 - B **631**, 100 (2005); N. G. Deshpande, G. Eilam and J. Jiang, Phys. Lett. B **632**, 212 (2006); C. Q. Geng and Y. K. Hsiao, Phys. Lett. B **632**, 215 (2006); D. S. Gorbunov and V. A. Rubakov, Phys. Rev. D **73**, 035002 (2006); S. V. Demidov and D. S. Gorbunov, arXiv:hep-ph/0610066; X. G. He, J. Tandean and G. Valencia, arXiv:hep-ph/0610274.
 - X. G. He, J. Tandean and G. Valencia, arXiv:hep-ph/0610362.
 - G. Hiller, Phys. Rev. D **70**, 034018 (2004).

- \sim 2*10⁹ Σ events
- > 3 events in P+dimuon decay mode
- > BR can be within SM prediction
- >Same di-muon mass (within 0.5 MeV) for 3 events <1% possibility
- >Narrow resonance X with mass 214 MeV
- > Can't be hadronic state
- > Can't be scalar and vector
- >Could be pseudo-scalar a in, say NMSSM or sgodstino

4. If a is boosted at high energy colliders: LEP, Tevatron and LHC

FIG. 1: Distribution of ΔR between $\mu^+\mu^-$ at Tevatron for signal $gg \to h \to aa \to 4\mu$ with "Tevatron basic cuts" of Eq. (4). In all figures of this paper, $m_h = 120$ GeV and $m_a = 0.215$ GeV, except indicated otherwise. The solid (dashed) lines in all figures represent signal (background).

- ➤ Unfortunately we overlooked such kind of di-muon in the on-going and past analysis! At ATLAS, Delta(R) > 0.01 in order to suppress fake muon!
- > However it is possible to reconstruct such di-muon in reasonable efficiency.

Event (a->di-muon) view at CMS detector by Z.C. Yang of Peking University

At CMS

netic field. The di-muon reconstruction efficiency is still substantial, for example $\sim 64\%$ for $p_T(a) = 50$ GeV.

5. If SM-like h->aa is dominant

the SM. For example, in next-to-minimal supersymmetric model (NMSSM) [5] in which a gauge singlet superfield is introduced, the SM-like CP-even Higgs boson h can mainly decay into light a pair where a is a (mostly singlet) CP-odd Higgs boson [6]. Such light a may due to the approximate R-symmetry [7]. The relevant limit on m_h can be deduced from the measurements of more final states $Zh \to Zaa \to Z\bar{b}b\bar{b}b$ or $Zh \to Zaa \to Z\bar{\tau}\tau\bar{\tau}\tau$. The weaker limit of m_h can be obtained [6] primarily due to dominance of $h \to aa$. Recently the authors of Ref. [8] studied the natural scenario to avoid in electroweak symmetry breaking while satisfying all LEP limits in NMSSM. In this scenario m_h can be lighter than 100 GeV while $Br(h \to aa) > 0.7$ and $m_a < 2m_b$.

[6] R. Dermisek and J. F. Gunion, Phys. Rev. Lett. 95, 041801 (2005) [arXiv:hep-ph/0502105].

Consequences

- > LEP can't find SM-like Higgs boson due to the fault of di-muon reconstruction.
- ➤ LEP direct search limit is meaningless in this picture, i.e. SM-like Higgs can be within 17~105 GeV (D data set).
- Tevatron and LHC can't discover Higgs boson either if they don't change analysis methods.

6. Higgs Phenomenology at LEP, Tevatron and LHC if h->4 muon can be reconstructed.

$$haa: \frac{igm_Z}{2\cos\theta_W}\kappa$$

$$Br(h \rightarrow aa) \sim 1$$

$$L_{a\bar{f}f} = -\frac{i}{v} \left(l_u m_u \bar{u} \gamma_5 u + l_d m_d \bar{d} \gamma_5 d \right) a + \frac{i g_\ell m_\ell}{v} \bar{\ell} \gamma_5 \ell a$$

$$l_d = -g_\ell \sim O(1), l_u = \frac{l_d}{\tan^2 \beta}$$
 in NMSSM

$$\tan \beta = 30$$
 and $l_d = -g_\ell = 1$

 $a \to \mu^+ \mu^-$ is calculated to be ~ 1

FIG. 3: Distributions of invariant mass of four μ for signal and background at LHC with $\sqrt{s} = 14$ TeV. "LHC basic cuts" are applied. Here the SM-like Higgs boson mass is taken to be 60, 90 and 120 GeV respectively.

FIG. 4: Same with Fig. 3 but at Tevatron with "Tevatron basic cuts".

FIG. 5: Distributions of invariant mass of four μ for $e^+e^- \rightarrow Zh \rightarrow Z+4\mu$ at LEP with $\sqrt{s}=208$ GeV. Requirements of Eq.(4) are applied. Here the SM-like Higgs boson mass is taken to be 60, 90 110 and 115 GeV respectively.

At Tevatron

with 1 fb^{-1} integrated luminosity, for $m_h = 120$ GeV, we will have 250 signal events. Even the real efficiency for 4μ reconstruction is 10%, we still have 25 events. At LHC for the same luminosity, Higgs boson mass and reconstruction efficiency, we can have ~ 1500 signal events.

at LEP

 4μ from signal. For $\sqrt{s} = 208$ GeV, with 500 pb^{-1} luminosity and 10% efficiency for 4μ reconstruction, we will have about 3, 7, 13 and 10 events for $m_h = 115, 110, 90$ and 60 GeV respectively.

7. Why a is so light (214 MeV)?

Light Axion within the Next-to-Minimal Supersymmetric Standard Model

Bogdan A. Dobrescu* and Konstantin T. Matchev†

$$W = \lambda \hat{H}_u \hat{H}_d \hat{S} + \frac{\kappa}{3} \hat{S}^3 .$$

$$V = \left| \lambda H_u^{\top} i \sigma_2 H_d + \kappa S^2 \right|^2 + \lambda^2 \left(|H_u|^2 + |H_d|^2 \right) |S|^2 + V_D + V_{\text{soft}} ,$$

$$V_D = \frac{M_Z^2}{2v^2} \left(|H_u|^2 - |H_d|^2 \right)^2 + 2 \frac{M_W^2}{v^2} \left| H_u^{\dagger} H_d \right|^2 ,$$

$$V_{\text{soft}} = M_{H_u}^2 |H_u|^2 + M_{H_d}^2 |H_d|^2 + M_S^2 |S|^2 + \sqrt{2} \left(m_\lambda H_u^\top i \sigma_2 H_d S - \frac{m_\kappa}{3} S^3 + \text{h.c.} \right)$$

3.1 Approximate R-symmetry

The scalar potential V has no global continuous symmetry. However, in the limit where the coefficients of the trilinear terms vanish, $m_{\lambda}, m_{\kappa} \to 0$, the potential has a global $U(1)_R$ symmetry under which the S charge, $y_S \neq 0$, is half the charge of H_uH_d . This symmetry is spontaneously broken by the VEVs of H_u, H_d and S, so that apparently there is a Nambu-Goldstone boson in the spectrum. In addition, $U(1)_R$ is explicitly broken by the QCD anomaly. To see this, note that the Yukawa terms responsible for quark masses impose constraints on the $U(1)_R$ charges of the quarks such that the $[SU(3)_C]^2 \times U(1)_R$ anomaly is proportional to y_S . Hence the Nambu-Goldstone boson is in fact an axion, and there is a small contribution to its mass from QCD.

$$M_{A_1} = \sqrt{3s} \left(m_{\kappa} \sin^2 \theta_A + \frac{3m_{\lambda} \cos^2 \theta_A}{2 \sin 2\beta} \right)^{1/2} + \mathcal{O}(m_{\lambda,\kappa}^{3/2}/\sqrt{v}) ,$$

8. Conclusions

- > Higgs->4mu events may lurk in the existing Tevatron/LEP data!
- >LHC need to search such unique Higgs signature!
- > Essential part is the 4mu reconstruction efficiency.

Analysis method matters!

- The divorce rate in China "decreases" one-half!
- •中国离婚率"降低"一半

- Divorce is "a pair", not twice!
- 一离婚是"一对"不能算两次!

Jan. 25, 2007, 《Beijing Evening》

谢谢!

Thanks!