RPC-DHCAL Progress & Status

H. Weerts Argonne

Research done as part of program of CALICE collaboration with main efforts from:

BILCW07, Beijing, February 4 – 7, 2007

Argonne National Lab Boston Univ. Univ. of Chicago Fermilab Univ of Iowa Univ. of Texas, Arlington

BILCW07, Feb 2007, H.Weerts

Slide 1

Outline

Introduction

Vertical Slice Test

Test of ~8 chambers with complete electronics At MTBF in Spring 2007

> Mechanical DCAL2 chip Pad and Front-end boards Data concentrators Data collectors DAQ software Beam telescope, HV, gas

Prototype Section plans

Measurements with complete 1m³ section Hopefully starting in 2008

Funding

Introduction I

There are several technologies being pursued as options for Big Picture: HCAL for ILC detectors.

> Precision required/aimed for jet energy demands new and novel approaches

 $\sigma = 30\% \sqrt{E_{jet}}$

Either use PFA, which requires very fine longitudinal and transverse segmentation OR compensating calorimetry (for all components (EM, charged & Neutral).

Options: Vary from scintillator (tiles or fibers) with analog readout to gas based calorimeters with digital/multibit readout.

All these options are either new technologies or have aspects that need to be verified before they can be used for an ILC HCAL

Lot of efforts by many

In this talk present progress on HCAL for a PFA application:

Gas calorimeter using RPC's and a digital readout system (not coupled) Transverse sampling is $1 \times 1 \text{ cm} \times \text{cm} \rightarrow \text{high channel count}$

Introduction II

Detector choice RPC, simple, large signals, easy transverse segmentation

Readout 1x1cm² sampling, using digital (=1 bit) readout

Use with RPC, but can be used for others (GEM, etc)

Goal: Try to make this work and prove feasibility for ILC

Transverse sampling is $1 \times 1 \text{ cm} \times \text{cm} \rightarrow \text{high channel count}$

Example: A 1m² plane has 10,000 channels = complete tilecal of ATLAS

A 1m³ typical "module" for a testbeam consists of 40 planes → 400K channels. This is a LARGE undertaking (make stable and understood). Never done before.

Approach: Build a vertical slice, with the final components and data handling and collection system that will be used for a 1m³ test, corresponding to ~2000 channels i.e. proof of principle

Goal: Verify that noise, random and coherent, is under control, that channels are stable, can be monitored and calibrated, proof stable operations, verify response to cosmics and testbeam.

After "proof of principle" build the 400,000 channel system on same technology BILCW07, Feb 2007, H.Weerts Slide 4

Staged approach

Vertical Slice Test

Vertical Slice Test

Uses the 40 DCAL ASICs from the 2nd prototype run

Equip ~8 chambers with 4 DCAL chips each

256 channels/chamber ~2000 channels total

Chambers interleaved with 20 mm copper - steel absorber plates

Electronic readout system (almost) identical to the one of the prototype section

Tests in MTBF beam planned for Spring 2007

 \rightarrow Measure efficiency, pad multiplicity, rate capability of individual chambers

 \rightarrow Measure hadronic showers and compare to simulation

Validate RPC approach to finely segmented calorimetry Validate concept of electronic readout

Mechanical: RPC chamber design

New design with simplified channels

- 1st chamber assembled and tested
 - \rightarrow Excellent performance

Thickness ~3.5 mm

Material in hand for remaining chambers

Mechanical: Stack for Vertical Slice Test

Design accommodates 20 x 20 cm² RPCs as well as 30 x 30 cm² GEMs

Stack is assembled

Beam telescope, HV, and gas

Beam telescope

6 counters (3 x (1 x 1 cm²) + 1 x (4 x 4 cm²) + 2 x (19 x 19 cm²) Mounted on rigid structure Counters in hand!

HV modules

Need separate supplies for each chamber Modules (from FNAL pool) being tested

With additional RC-filter perform similarly to our Bertan unit in analog tests (RABBIT system) Digital tests satisfactory too

Gas system

Need manifold for 10 chambers (in hand!) Need approval for gas tanks (safety issue)

Electronic Readout System for Prototype Section

Suitable for both RPCs and GEMs

40 layers à 1 m² \rightarrow 400,000 readout channels

More than all of DØ in Run I; ATLAS tilecal HCAL is 10,000 channels; ATLAS ECAL 200,000

- Front-end ASIC
- Pad and FE-board
- Data concentrator
- Super Concentrator IV
- VME data collection V
- Trigger and VI timing system

DCAL chip

Design

- \rightarrow chip specified by Argonne
- \rightarrow designed by Fermilab

1st version

- \rightarrow extensively tested with computer controlled interface
- \rightarrow all functions performed as expected

Redesign

- \rightarrow decrease of gain by factor 20 (GEMs) and 100 (RPCs)
- \rightarrow decoupling of clocks (readout and front-end)

2nd version

- \rightarrow submitted on July 22nd
- \rightarrow 40 chips (packaged) in hand

Test board

- \rightarrow redesign of test board (changes in pin layout etc. complete
- \rightarrow boards fabric ted
- \rightarrow chip mounted on tes board

Testing (2/40)

- \rightarrow all software written
- \rightarrow te ts ongoing

BILCW07, Feb 2007, H.Weerts

Reads 64 pads Has 1 adjustable threshold Provides Hit pattern Time stamp (100 ns) Operates in External trigger or Triggerless mode

DCAL2 Testing II

Ratio of high to low gain

 $R_{h/l} = 4.6 \pm 0.2$

(roughly as expected)

Other tests

- Sort out small problem with trigger (understood, can be circumvented)
- External charge injection (ongoing, first results look good)
- Noise floor (tests complete, results OK)

Chip can be used for vertical slice test Small modifications still necessary for production

Pad- and Front-end Boards I

New Concept

Split old 'Front-end board'

Pad board

FE board

'front-end board' highly complex and difficult blind and buried vias + large board => (almost) impossible to manufacture split into two boards to eliminate buried vias

Pad boards

four-layer board containing pads and transfer lines can be sized as big as necessary relatively cheap and simple vias will be filled

Front-end boards

eight-layer board 16 x 16 cm² contain transfer lines, houses DCAL chip expensive and tough to design

Connections

board to board with conductive glue on each pad (being tested) cables for connection to data concentrators

Pad- and Front-end Boards II

Any size, multiple of 16x16 cm² 4-layer Pad-board

8-layer FE-board, 16x16 cm² All (almost) layers shown

V7 V8 V9

VB is 380sq mill paol gold plated qty 1536 1cm center to center on bottom side only (32 col. x 48 rows)

BILCW07, Feb 2007, H.Weerts

Silde 16

Data concentrator boards

Functionality defined Protocol to data collector defined

Design almost completed

Timing and trigger module

Functionality (almost) defined Being designed by Argonne

Data collector boards

New Design Effort

Boston Univ

Fabrication of prototype this month

Functionality

All data received as packets

Timestamp (24 bits) + Address (16 bits) + Hit pattern (64 bits)

Packets grouped in buffers by matching timestamps

Makes buffers available for VME transfer

Monitors registers (scalars)

Slow control of front-end

Allows read/write to DCAL chips or data concentrator boards BILCW07, Feb 2007, H.Weerts

Responsibilities and collaborators

Task	Responsible institutes	
RPC construction	Argonne, IHEP Protvino	
Mechanical structure (slice test)	Argonne	
Mechanical structure (prototype section)	DESY	
Overall electronic design	Argonne	
ASIC design and testing	FNAL, Argonne	
Front-end board design	Argonne	
Data concentrator design	Argonne	
Data collector design	Boston	
Timing and trigger module design	Argonne	
DAQ Software	Argonne	
HV and gas system	lowa	
Beam telescope	UTA	

1 m³ Prototype Section

FUTURE

BILCW07, Feb 2007, H.Weerts

Slide 21

Costs and Funding

A) Slice test is funded by LCDRD06, LDRD06 and ANL-HEP, and Fermilab

B) Prototype section not yet funded, but...

Stack	Item	Cost	Contingency	Total
RPC stack	M&S	607,200	194,600	801,800
	Labor	243,075	99,625	342,700
	Total	850,275	294,225	1,144,500
GEM stack [*] * Reusing most of the RPC electronics	M&S	400,000	165,000	565,000
	Labor	280,460	40,700	321,160
	Total	680,460	205,700	886,160
Both stacks	M&S	1007,200	359,600	1366,800
	Labor	523,535	140,325	663,860
	Total	1,530,735	499,925	2,030,660

Proposal for supplemental funds for \$500k/year over two years submitted to DOE Help from ANL (LDRD), ANL-HEP, FNAL expected...

Conclusions

Finally gaining momentum!!!

- Vertical slice test

Funded (more or less) Concentrated effort with monthly meetings Goal: tests at MTBF in Spring 2007

- Prototype section

Expensive! Funding appears possible Goal: RPC stack in 2008