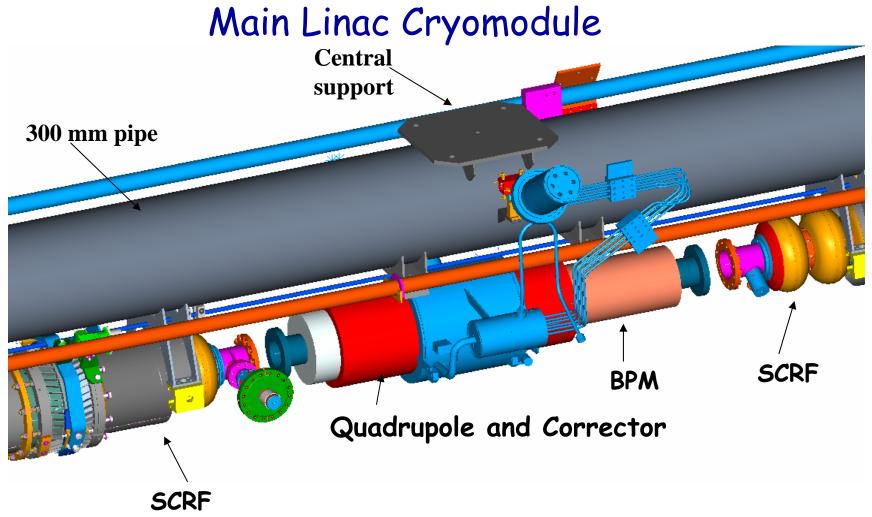


SUMMARY of DISCUSSION Work packages for EDR

Main Linac:

QUAD package and Instrumentation N.Solyak/K. Tsuchiya Installation and Alignment F.Asiri/A.Tetsuo/R.Ruland **CF&S** Interface T.Lackowski Reliability, MPS, Operation and Tuning T.Himel/PT/J.Carwardine


LC_{Inte} Magnet System Work Packages

$-v - \tau$

Magnet Work Packages		Power System WPs			
1	e ⁻ Source Conventional Magnets	13	e- Source Magnet Power Systems		
2 3	e+ Source Conventional Magnets e-, e+ Source, RTML Solenoids	14			
4 5	e+ SC undulators DR Conventional Magnets	15	Damping Rings Magnet Power Systems		
6	DR Wigglers	16	RTML Magnet Power Systems		
7	RTML Conventional Magnets	17			
8	Main Linac/Cryomodule SC quads & correctors	10	Systems		
9	BDS Conventional Magnets	18 BDS Magnet Power Systems			
10	BDS Final Focus SC Magnets & TF Octupoles		Incl. magnet interfaces to Controls System Does not include Pulsed Magnets		
11	BDS Magnet Movers		Magnet Facilities WPs		
12	Pulsed Magnet Systems	19	Con. Mag. Test & Meas. Facility		
cor	eparate special magnets from more 'routine' nventional designs separate WP for 'pulsed magnets'	20 Cold	SC Mag. Test & Meas. Facility magnet test facility design – shared with mod's/SRF test & measurement systems		

L C International Linear Collider

Fermilab

SC Quads /Correctors ~ 620 in Linacs + RTML

LC Internatio SC imagnets for ML

- \cdot Critical Component of the ML and RTML
- Tight specification
 - Requirements for center stability ~1um
 - Small fringing fields in the cavity
 - No dipole-corrector coupling effects
- · No proven design yet
- R&D and prototyping are needed to confirm the specified performance and efficiency
 - Number of magnet types (low/medium/high energy)
 - Combined or stand alone correctors
 - Optimal quadrupole configuration
 - Magnetic center stability during –20% field change
- Sub-packages with high priorities (Low energy magnet)?

ART FY08/09 Budget proposal (2 Years) '

VBS x.7 ML: Optics, Beam dyna	mics, I	nstrum	entat	ion	Targe	et 2	
		FY08	FY08	FY08	<i>FY09</i>	FY09	FY09
		Labor	Direc	Total	Labor	Direct	Total
Description	Lab	FTE	M&S		FTE	M&S	
			K\$	k\$		K\$	k\$
Quad package design							
ML quadrupole and corrector de	FNAL	0.50	0	0	0.25	0	0
Separate cryostat for quad pack	FNAL	0.00	0	0	0.00	0	0
R&D	otal:	0.	.75 F	TE*ye	ear () M	&S
Quad package test							
SC Quad prototype and tests	FNAL	1.25	60	60	2.00	75	75
SC Corrector prototype and test	FNAL	0.70	42	42	0.80	37	37
Test Separate cryostat with qua	FNAL	0.00	0	0	0.00	0	0
	Total:	•	4.75	FTE*	year	214 k	(\$ M&
Facilities and Infrastructure							
Test Stands							
Tev Test Stand upgrade for SC	FNAL	0.75	80	80	0.75	100	100
SSW system upgrade for Quad	FNAL	0.10	55	55	0.20	50	50
Total: 1.8 FTE*year 285 k\$ M&S							

Funding for FY08-FY09 was planned w/o EDR needs

EDR SC magnet design and cost estimate cannot be carried out without sufficient funding

EDR Magnet Design and Cost Effort

Preliminary Staffing Estimate for "100% Design" Feb.07.02

Magnet Category	Est. No. of Styles	Eng./Phys. (FTE)	Prcrmnt (FTE)	Designer (FTE)		
Con. Conventional Magnets	75	13.8	1.3	36.7		
Uncon. Conventional Magnets	15	6.3	0.5	18.0		
Superconducting Magnets	6	3.2	0.3	8.4		
Totals	96	23.3	2.1	63.1		
Yearly (over EDR period)		7.8	0.7	21.0		
Scaled by RDR and similar experience						
Totals		36.9	3.3	<i>99.</i> 7		
Yearly (over EDR period)		12.3	1.1	33.2		

SC Magnet development plan at KEK (K. Tsuchiya)

 Budget and Manpower dedicated test facility : 		~1.5 M\$
cooling system		
field measurement sys	tem	
- ~6 magnets :		~1.5 M\$
- magnet installation into cryc	module	e ~ 0.3 M\$
and test operation		
Manpower		
magnet design & fabrication	:	2.0 FTE/
year		
cooling system	:	1.5 FTE/ year
field measurement system	:	1.5 FTE/ year
	(*	Preliminary estimations)

ILCINTERI Instrumentation Overview

Beam instrumentation needs in the Main Linacs, as listed in the RDR:

Instrument	Requirements	Qty	R&D WPs		
mstrument	Requirements	Qty	M&S (k\$)	FTE (MY)	
Cold BPM (L-Band cavity)	0.52 µm	2 x 312	500	6	
Laserwire	~10 % of transverse beam size	2 x 3	400	5	
Beam current monitor-toroid	0.51 % of bunch charge	2 x 3			
BLM - PMT	< 0.01 % of total	2 x 325			
-Ion Chamber	beam intensity	2 x 10			
Feedback systems	Inject / ejection, energy, spread	2 x 10	300	4	

+ Further R&D is required on the **HOM coupler signal processing** for beam orbit, cavity alignment and beam phase measurement! Work package proposal: M&S ~ 200 k\$, FTE ~ 3 ManYears.

Instrumentation R&D packages desciption

• L-band cavity BPMs (Linacs, RTML, BDS, both warm and cold-)

- Cavity BPM
- Analog and digital read-out electronics
- Trigger/timing hardware to time-resolve position for individual bunches

- A system for calibration and self-diagnosis tests.
- Digital data acquisition and control hard/software, incl. interface.
- Auxiliary systems (racks, crates, power supplies, cables, etc.)

• Laserwire : (Linacs, RTML and BDS)

- Laser (one can feed many IP's) IP (multi-plane) e / Y Separation
- Distribution
- Deflector (scanner)

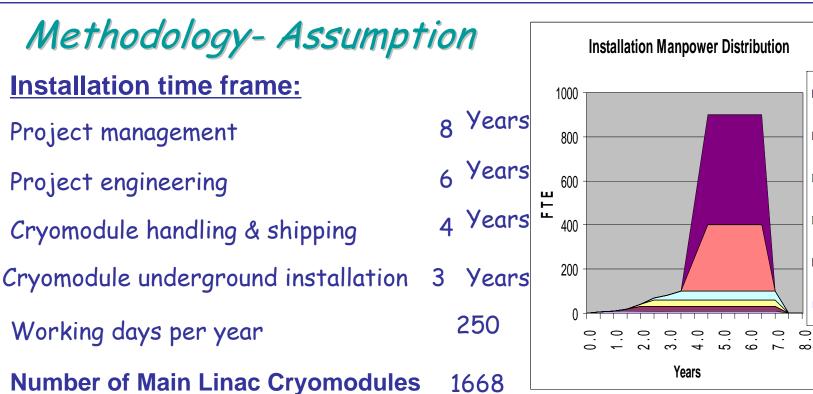
Beam Feedback Systems

stabilize beam trajectories/emittance/dispersion in the Linacs.

Detector

- Trajectory Feedback (several cascaded loops) 5Hz
- Dispersion measurement and control
- Beam energy (several cascaded sections) (5Hz)
- End of linac trajectory control (bunch-by-bunch)

Day Shift (500)


Swing Shift (300)

□ Prep & Surface Xport (40)

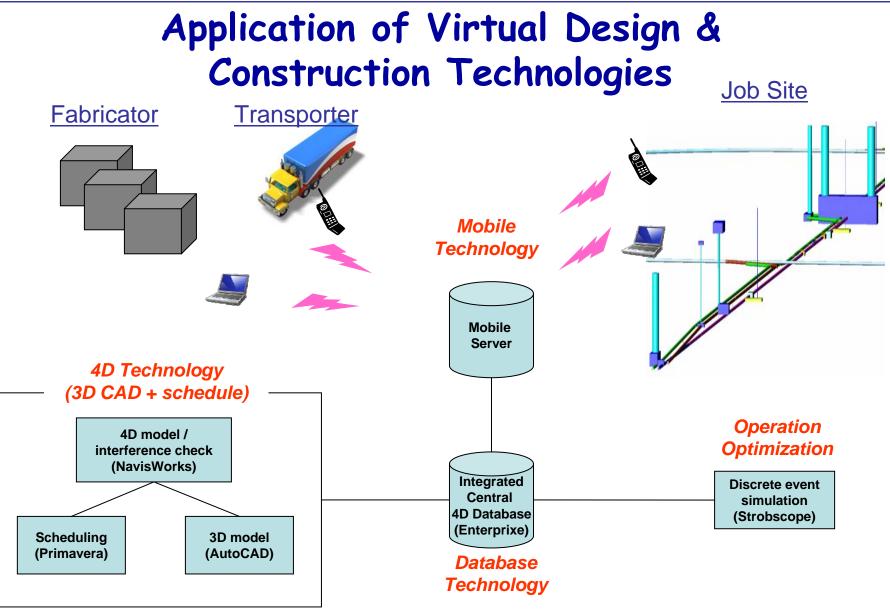
Rec'v supplies/insp (30)

Eng. & Q&A (20)

Proj. Mgt (10)

Installation rate: Three Cryomodules per day *

* 556 days @ max rate of Cryomodule installation, plus learning curve and interrupts.

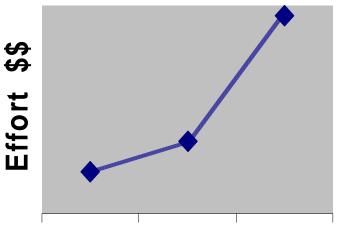

ML installation ~ 3 500 000 hrs F.Asiri

FUTURE PLANNING

- There are a series of long lead items that must be addressed, before the installation can commence. These are:
 - Warehousing capacity
 - Tunnel transportation for equipment & personnel
 - Materials handling requirements for the tunnel
 - Utility requirements & locations including cryo box locations in the tunnel.
 - Data processing, including inventory control & scheduling.

FUTURE PLANNING

- Installation G.S.
 - Goal: to produce an integrated
 Installation process for the ILC Baseline
 in full cooperation with other regions
 - Set-up and manage an installation data base in FY 07 that can be expanded in a full pledged program thru FY 08 and FY 09


✓ Estimate:

FY 07;1.5 FTE and ~ \$100K M&S (contract) FY 08; 2 FTE and ~ \$200K M&S (contract) FY 09; 2 FTE and ~ \$200K M&S (contract)

CF&S Effort Levels (before EDR)

- The CF&S effort will need to ramp up sharply over the next three years in order to complete what we perceive is required for the EDR.
- A parallel effort to develop regional selection documents will add to the EDR effort.
- Regional support and funding is under discussion, but not firm enough to make financial commitments.
- All regions have limited available inhouse engineers. Will need to through expanding A&E consultants.

Year 1 Year 2 Year 3 4M\$ - 7M\$ - 19M\$

T.Lackowski

Firm #1 - General Architect/ Engineering Firm

(\$1,000K to \$2,500K)

- This firm will provide professional architectural and engineering services to support the ILC mission. The general scope of this work may include:
- Condition Assessments;
- Surface Building Programming:
- Site Planning;
- Building design;
- Conceptual Design Studies and reports
- Value Management Analysis

Firm # 2 - Underground Engineering Expertise (at least three firms anticipated to be selected) (\$5,000K to (\$10,000K)

- Design, cost estimating, and scheduling of hard rock tunnels, caverns and halls.
- Design, cost estimating, and scheduling of soft rock tunnels, caverns and halls.
- Design, cost estimating, and scheduling of open cut enclosures.
- Conceptual Design Studies and reports
- Presentation Drawings:
- Value Engineering Analysis
- Soil borings, and the associated field and laboratory analysis. Geotechnical Reports
- Geotechnical baseline reports

- Firm # 3 Site Civil Expertise
- Firm # 4 Electrical Expertise
- (\$300K to (\$900K)

(\$500K to \$1,000K)

- Firm # 5 Process Cooling and Mechanical Engineering (\$600K to \$1,200K)
- Firm # 6 Life Safety Engineer

(\$300K to \$700K)

 Firm #7 - Configuration Controls and Project Controls Systems

(\$400K to \$1,200K)

Firm # 8 - Environmental, Safety and Health

(\$300K to \$600K)

Firm # 9 - Land Acquisition Support
 (\$200K to \$500K)

Availability

T.Himel

- Description:
 - Monitor progress of other groups in meeting reliability goals. Aid them with simulations or calculations as requested.
 - Adjust reliability goals to minimize risk and cost as development continues
 - Keep availability model updated to changes in design. Add in more detail as necessary.
 - Should we set up a FMEA plan and get all systems to use it in the design of their parts? (not included in FTE estimate below)
 - What should we do about systems like water instrumentation, collimators, and coupler interlocks that need major MTBF improvements that don't have ongoing R&D projects?
- Resources:
 - 1 FTE level of effort through 2nd year of construction

• MPS system:

- 33 FTE level of effort through 5th year of construction
- 2 FTE years for fault scenario simulations. Should be done in first 1.5 years of EDR as results could effect beam-line layouts
- · PPS +BCS:
 - 0.5 FTE level of effort through 2nd year of construction
 - 2 FTE-years of rad-physics calculations guided by above LOE person. Should take place in first 1.5 years of EDR as shielding may effect layout.
- Refine alignment and vibration tolerances
 - 2 FTE years. MUST be done in 1st year of EDR so detailed magnet and support designs can be done based on the tolerances.

- Tuning and feedbacks:
 - 12 FTE years if it is done 3 times so people are checking each other. Considerable computing resources will be needed hopefully these exist at the lab already and hence don't count as M&S. This effort can start slow and can extend to the beginning of construction
- Commissioning:
 - 0.2 FTE level of effort through end of the EDR
 - Then .5 FTE level of effort through 4th year of construction.
 - Some beam operations start in 3rd year of construction
 - 6 FTE years if everything is done once.