#### Muon Purity and Detection Efficiency Variation With Depth in an SiD Type Detector C. Milstene- Fermilab-November21-2006

In collaboration with: G. Fisk and A. Para (Fermilab) JINST-002-0506- C. Milstene, G. Fisk, A. Para

## The Detector

#### (Not quite SiD)

| ECal                            | HCal                             | Coil           | Mudet                          |  |
|---------------------------------|----------------------------------|----------------|--------------------------------|--|
| (30Layer)                       | (34Layer)                        |                | (32Layer)                      |  |
| X0 - 21.75                      | X0 - 39.44                       | X0 - 13        | X0 - 87.15                     |  |
| Λ - 0.872                       | Λ - 4.08                         | Λ - 2          | Λ - 10.2                       |  |
| dE/dx - 190MeV                  | dE/dx - 800MeV                   | dE/dx - 362MeV | dE/dx - 1400MeV                |  |
| Segmentation:<br>ΔΦ =Δθ= 3.7 mr | Segmentation:<br>ΔΦ =Δθ= 5.23 mr |                | Segmentation:<br>ΔΦ =Δθ= 21 mr |  |

#### Mu Detector:

230cm thick for the magnet flux return:

- 5 cm Fe plates
- 32 instrumented gaps.(1.5cm Sc)

#### The Detector Display



#### **Quadrant SiD**



## The Stepper

- The Stepper software simultaneously includes dE/dx and q v x B effects,
- We study the effect on single monoenergetique particles
- The effect on bbar-b jets

#### **Stepper-Analytical Form**

arXiv:physics.inst.det/0604197-C. Milstene, G. Fisk, A. Para

$$p_{x}(n+1) = p_{x}(n) - 0.3 * q * \frac{p_{y}}{E(n)} * c_{light} * B_{z} * \delta t(n) - \gamma_{x}(n)$$

$$p_{y}(n+1) = p_{y}(n) + 0.3 * q * \frac{p_{x}}{E(n)} * c_{light} * B_{z} * \delta t(n) - \gamma_{y}(n)$$

$$p_{z}(n+1) = p_{z}(n) - \gamma_{z}(n);$$

$$\gamma_{i}(n) = \frac{dE}{d_{i}} * \frac{E(n)}{|p(n)|} * \frac{p_{i}(n)}{|p(n)|} * \delta s; i = x, y, z.$$
Mixed uni

$$x(n+1) = x(n) + \frac{p_x(n+1)}{E(n+1)} * c_{light} * \delta t(n) ;$$

$$y(n+1) = y(n) + \frac{p_y(n+1)}{E(n+1)} * c_{light} * \delta t(n) ;$$

$$z(n+1) = z(n) + \frac{p_z(n+1)}{E(n+1)} * c_{light} * \delta t(n) .$$

; q is the charge,
Bz the magnetic field,
; dt(n) the time spent and ds the path length in one step

Mixed units are used, px, py, pz are in GeV/c, E(n) in GeV, clight =3x108 m/s,  $\delta t$  in seconds, Bz in Tesla The point ( x(n+1),y(n+1),z(n+1) ) is the position at step n+1, after the momentum change to px,y,z(n+1) at step n.

### Single Muons-Reconstructed by the Stepper B=5 Tesla Magnetic Field

#### y(cm)



| EMCAL -2 RED   | Rings |
|----------------|-------|
| HDCAL -2 BLACK | Rings |
| COIL -2 GREEN  | Rings |
| MUDET -2 BLUE  | Rings |

#### •3 GeV Muons curling by the high B field In the tracker, Ecal, HCal

•50GeV Muons straight

### 2GeV Muon Curling Back in HCal **Reconstructed And Simulated -Details**



Reconstructed-Yellow C. Milsténe Simulated- Green and blue

#### Muon Reconstruction Efficiency



The Stepper has been improved further by a Runge-Kutta method and A Kalman-filter stepper has been developped. *arXiv: physics.inst-det/0605015-C.Milstene,G.Fisk,A.Para* 

#### **Runge-Kutta Correction**

We now focuses mostly on lower momenta, ~30% of the data reaching the muon detector (3GeV≤ p <5GeV). The approximation Δp<sub>T</sub> / Δt ~ dp<sub>T</sub> / dt is insufficient here, at least at the end of their path.. Here ΔpT (GeV/c) is the variation in pT of a particle going through a field B (Tesla) for a timeΔt(s).

$$dp_T / dt = \alpha \bar{v} \times \bar{B}$$
, with  $\alpha = 0.3q(1/E)c_{light}dt$   
E is the particle energy in GeV, q its charge in electron units,  
clight (m/s). In a 5 Tesla magnetic field, for low momenta, one  
has to calculate the integral in order to obtain the finite  
difference equation of motion

$$\Delta p_{x}B = (\alpha / \delta) \cdot p_{y} \cdot B_{z} - \eta \cdot p_{x}$$
  

$$\Delta p_{y}B = (\alpha / \delta) \cdot p_{x} \cdot B_{z} - \eta \cdot p_{y}$$
  

$$\Delta p_{z}B = 0.$$
  
Is the Field  
In Moment

s the Field dependant change n Momentum

 $\delta = 1 + 0.25 \alpha^2 B^2$  ,  $\eta = 0.5 \alpha^2 \text{B}^2$ 

## The Jets Data

arXiv:physics.inst.det/0605015-C. Milstene, G. Fisk, A. Para

10000 bbar-b jets events generated with Geant4

- P>3GeV required in order for the Muon to reach the Muon Detector
- A polar angle cut define the barrel. [0.95-2.2]rd

## The Algorithm

Rely on the 2 main characteristic properties of the muon

- 1. The muon creates a repetitive pattern of 1 to 2 hits per cell all the way
- 2. The muon travels deep without interacting whereas hadrons are filtered out

For each Charged track with a good fit in the tracker hits are collected in a road in  $(\Delta \Phi, \Delta \theta)$  in ECal, HCal and Mudet

- -Accounting for v&B and dE/dx effects
- -requiring no more than 2 hits/cell
- -requiring a given depth reached into the Muon detector

### Layers with One or Two Hits in HCal and Mudet (MIP-like)



## Filter to Hadrons-The Cuts

Hadrons tend to interact  $\rightarrow$  Irregular hit patterns They don't reach out

1/ we cut on large energy deposit in the path

- 2/ we cut on void on 2-3 consecutive layers
- 3/ we require at least 1 hits on the last 4 layers of HCal and less than 4 hits/layer (still allows neutral from neighbor tracks)

### Layers with > 3 Hits (Typical of Hadron activity) In HCal & Mudet



#### **b** Interacting Hadron Content



## Purity versus Efficiency



<u>Remark</u>: Muons which do not enter the layer e.g. bending into the endcaps at a certain level of their path, are not included in the normalization.

#### HCal & MuDet Barrel - Purity and Efficiency Cuts

| Conditions for 10,000 b-b_bar                                    | Muons | Pions | K's  | Protons |
|------------------------------------------------------------------|-------|-------|------|---------|
| Tracker Recons<br>& Final Tracks                                 | 739   | 18024 | 4303 | 1712    |
| Good Fit<br>Tracker                                              | 715   | 17120 | 4072 | 1579    |
| 1 or 2 hits in each<br>of the last 5 layers<br>of Hcal. (No 0's) | 700   | 357   | 204  | 15      |
| MuDet<br>≥12hits,≥12layers                                       | 671   | 77    | 50   | 5       |
| Min Mudet Hits=1,2<br>Max Mudet Hits≤7                           | 670   | 69    | 39   | 5       |

## Momentum distributions in b jets

In bbar-b jets events the muon is ~1.7% of the particle population

|                         | π     | k     | proton | μ     |
|-------------------------|-------|-------|--------|-------|
| Total Gen               | 55805 | 8310  | 2816   | 1147  |
| Gen > 3GeV              | 18666 | 4473  | 1622   | 787   |
| Fract. >3GeV            | 34%   | 54%   | 58%    | 69%   |
| Recon>3GeV              | 18024 | 4303  | 1614   | 739   |
| Good Fit                | 17120 | 4072  | 1579   | 717   |
| Identified              | 69    | 39    | 5      | 670   |
| As µ                    |       |       |        |       |
| Rejection<br>Efficiency | 1/261 | 1/104 | 1/322  | 93.5% |

## Mu& Pions Background Generated/Detected By Mu Algorithm- Out Of 10000 b-bbar Jets



C. Milsténe

20

## Conclusion

- A study of Muon ID and Purity in the detector shows that in bbar-b events one is able to identify the muons (1.7% of the population) with an efficiency which can reach 99.6% and a purity of 95%
- We have also shown that we get a steady improvement of purity and muon efficiency with depth. The purity rises from 69% at the end of HCal to 94% at the end of Mudet and the efficiency from 95% to 99.6%

It requires just the instrumentation of part of the return iron of the magnet.

- The code is being developed to take a better care of the muons at the end of their trajectory.
- Due to small losses of barrel muons to the endcap the muon efficiency will improve further with the inclusion of the endcap to the code in development.

#### Last Layer With Activity



C. Milsténe

The upper figure shows the layer number where the muon reaches zmax. All the muons that reach zmax in layer 11 or higher meet the  $\mu$ ID requirement. I.e. they are detected. The plot shows that most of the barrel muons above 3 GeV/c stay in the barrel and meet the muon penetration requirement for  $\mu$  ID.

The lower figure is a blow-up of the upper histogram that shows the exit layer for those muons that do not meet the penetration requirement of 12 or more layers. 33 barrel muons exit the barrel before they reach z-max, so they are un-detected muons; they do not penetrate  $\geq$ 12 layers. 22

# Vertex Detector & 1<sup>st</sup> Tracker Layer



## Extra Info

-Ecal rmin=127cm,rout=142cm->15cm Z=210cm; 0.25W+0.05Si+0.2(air+G10)->d=0.5cm-Hcal rmin=154cm,rout=250cm->102cm Z=312cm;2cmFe+1cmSc -> d=3cm -Mudet rmin=348cm,rout=540cm->192cm Z=313cm; 5cmFe+1.5cmSc -> d=6.5cm This document was created with Win2PDF available at <a href="http://www.daneprairie.com">http://www.daneprairie.com</a>. The unregistered version of Win2PDF is for evaluation or non-commercial use only.