Latest laser-wire results

- How does a Laser-Wire work?
- Latest ATF results
- Focusing optics
- Latest PETRA results

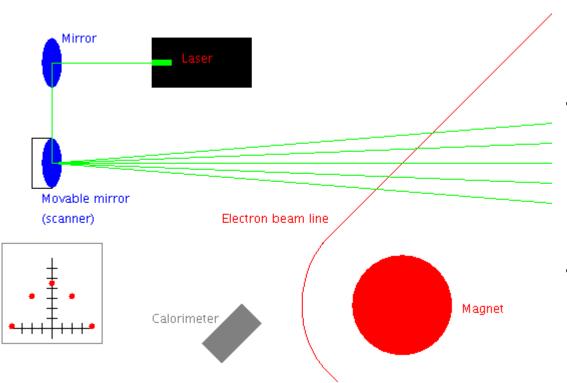
University of Oxford: <u>Nicolas Delerue</u>, Brian Foster, David Howell, Myriam Newman, Armin Reichold, Rohan Senanayake, Roman Walczak

Royal Holloway, University of London (RHUL): Grahame Blair, Stewart Boogert, Gary

Boorman, Alessio Bosco, Lawrence Deacon, Pavel Karataev, Michael Price

BESSY: Thorsten Kamps

DESY: Klaus Balewski, Hans-Christoph Lewin, Freddy Poirier, Siegfried Schreiber,

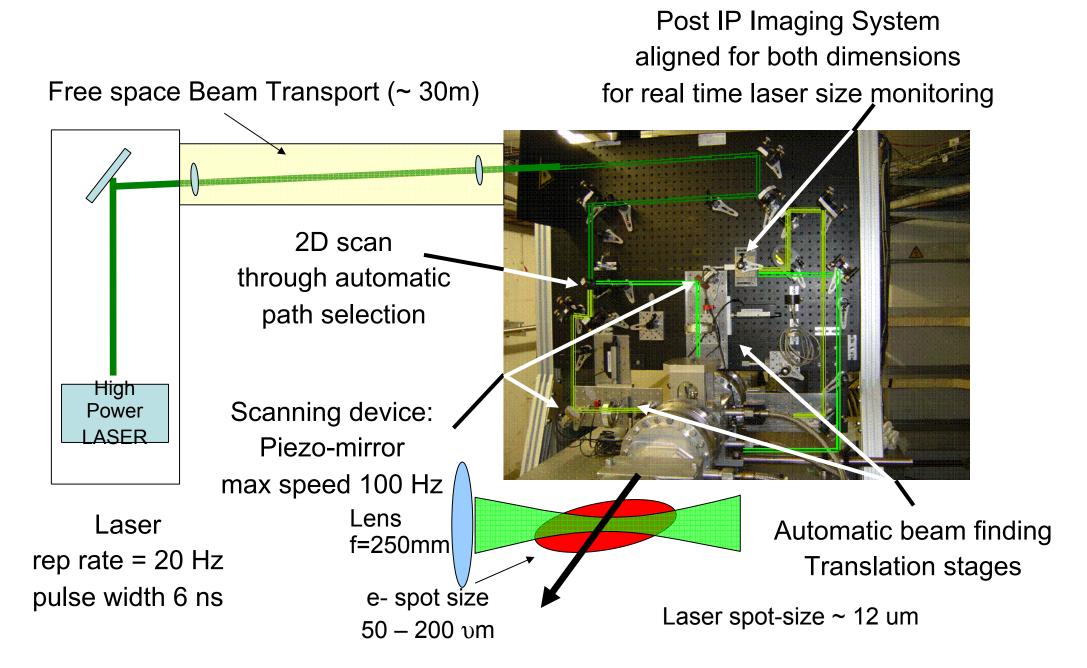

Kay Wittenburg

FNAL: Marc Ross

KEK: Alexander Aryshev, Nobuhiro Terunuma, Junji Urakawa

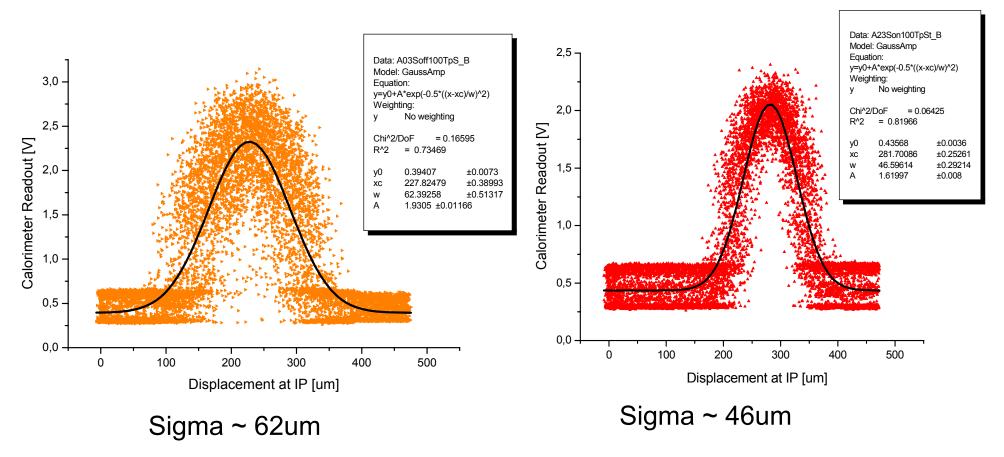
SLAC: Joe Frisch, Douglas McCormick

How does a laser-wire work?

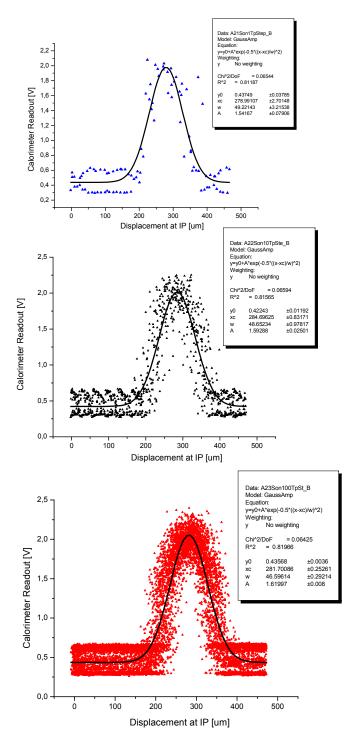

• The resolution of a laser-wire depends on the size of the laser beam

- When the photons of a laser interact with electrons, Compton photons are produced.
- The number of Compton photons
 produced is proportional to the
 electrons' density at the position of the
 laser.
- By sweeping a laser across an electron beam one can produce a profile of the beam and hence measure its size.
- Knowing the size of a beam allow to measure its emittance.

Laser-wire R&D for the ILC


- Many (~70) laser-wires will be used along the ILC to control the emittance from the source to the Interaction Point.
- Important R&D is needed to demonstrate laser-wire operations in ILC-like conditions: ultra fast scanning, strong focusing, high power high rep. rate low M² laser
- 2 single-pass prototypes in operation:
 - One at PETRA (DESY): fast scanning, 2D...
 - One at the ATF (KEK): um-resolution
- Other LW applications are investigated by other groups (DR LW,...)

2D LW scanner at PETRA


Unseeded (100 steps, 100 points per step) 10,000/20Hz = 500sec

Seeded (100 steps, 100 points per step) 10,000/20Hz = 500sec

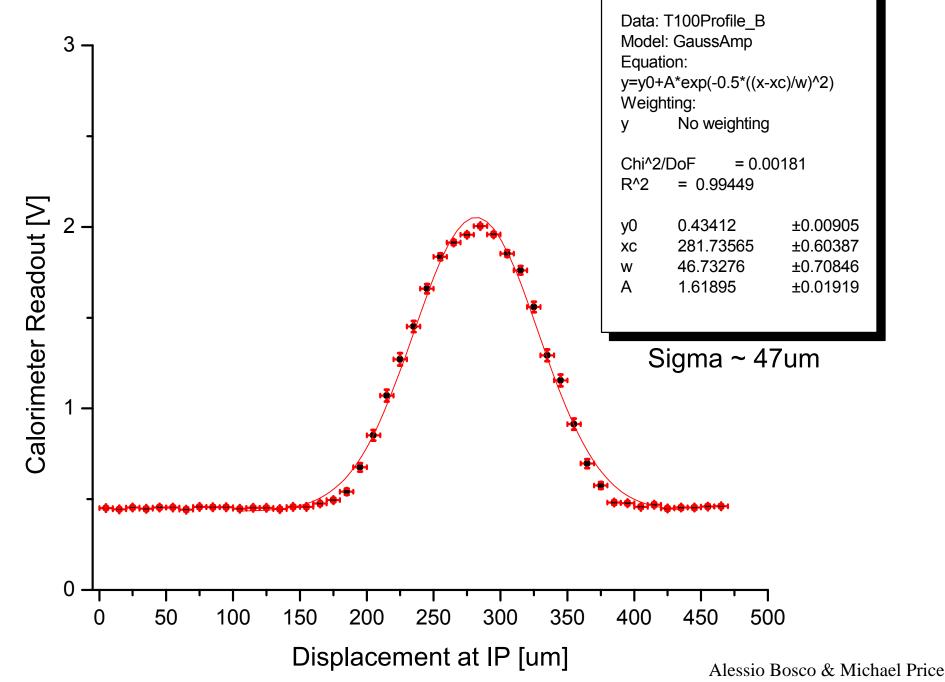
Scan give a better resolution when the laser is seeded.

Alessio Bosco & Michael Price

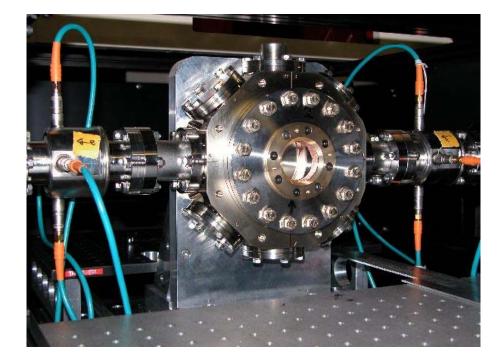
Seeded (100 steps, 1 point per step) 100/20Hz = 5 sec

Sigma ~ 49um

Seeded (100 steps, 10 points per step) 1,000/20Hz = 50sec

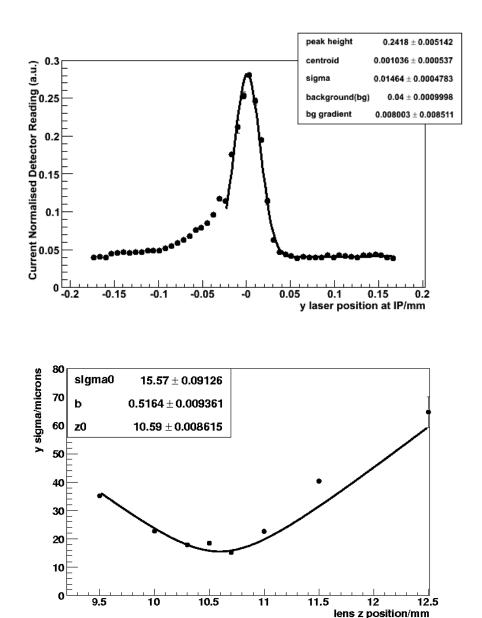

Sigma ~ 49um

Seeded (100 steps, 100 points per step) 10,000/20Hz = 500sec


Sigma ~ 47um

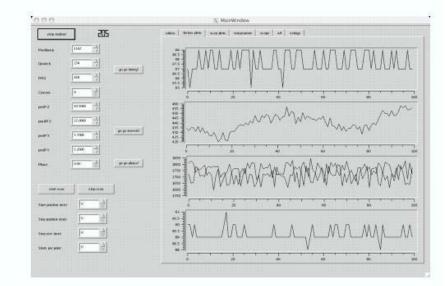
Fast scans give a resolution comparable to scans with more data points

Seeded (100 steps, 100 points per step) 10,000/20Hz = 500sec Averaged step-by-step

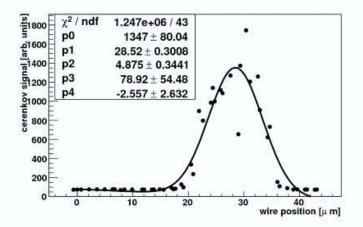


ATF Extraction line laser-wire

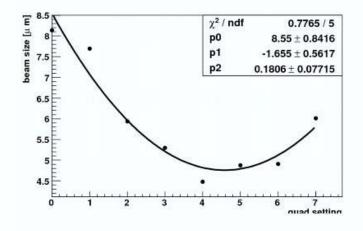
- Goal: demonstrate um-scale resolution in a single pass system
- System successfully installed and tested last year with a commercial lens
- Strong focusing lens will be installed this year

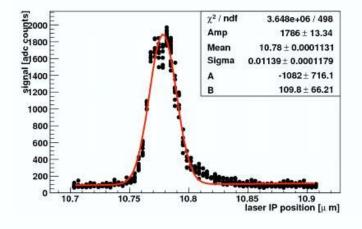

ATF LW data (spring 2006)

- Obtaining Compton photons at the LW IP is a 2D problem: photons and electrons must overlap in time (within 200ps) and space (vertically, within 20um)
- First collisions observed in April 2006.
- Measured beam size compatible with our expectations.
- Scan asymmetry due to lens aberrations
- Laser $M^2 \sim 2.9$

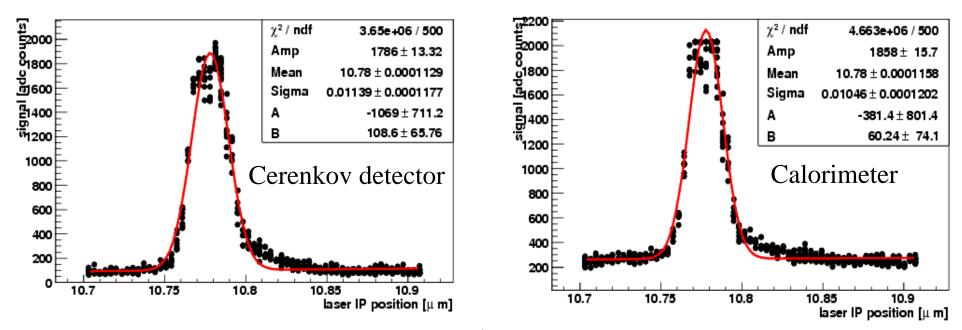

System improvements

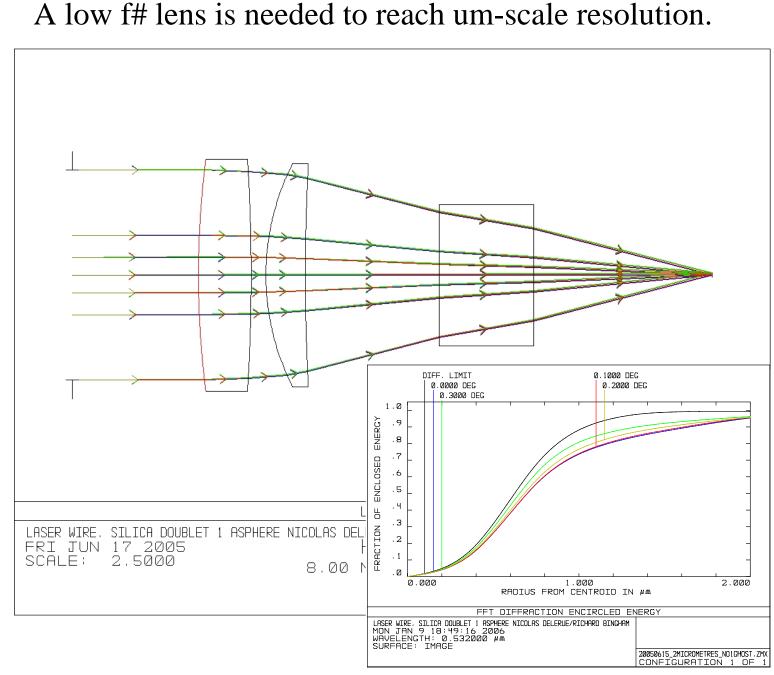
- Added Lead glass calorimeter detector
 - Calibrated with cosmic muons
 - Compare with Aerogel Cerenkov detector
- Integrated DAQ
 - Camac ADCs/TD/TDC
 - Laser power meter
 - ATF-EXT stripline BPMs
 - Wire scanner (stage)
 - Labview control of optics (mirrors)
 - RF phase timing control




Stewart Boogert

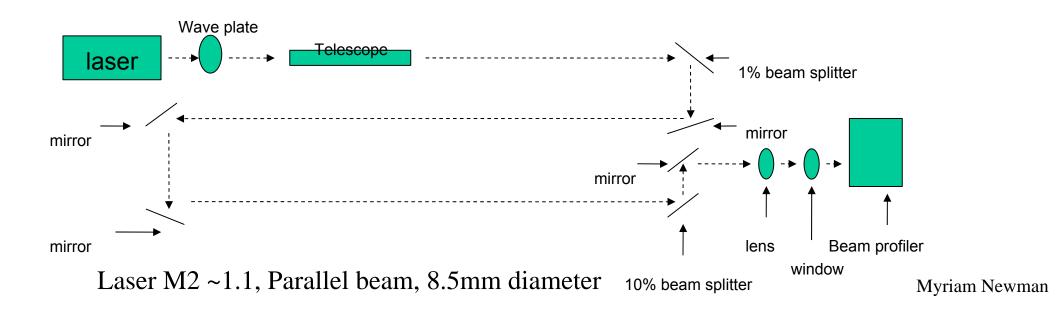
Results (>Nov 2006)


- Wire scanner measurements to confirm optics
 - Electron beam size ~4µm
- Laser scans
 - Laser-electron beam quadrature size ~11.4µm


Stewart Boogert

Photon detector comparison

LW Scans 13th December 2006


f/2 lens design@532nm

- Focal length: 56mm
- One aspheric element, one flat
- Back focal length:
 24mm
- Aperture f/2
- All elements in fused silica
- No primary ghosts, one secondary ghost
- Expected spot radius
 ~2 micrometres

Lens profiling

- A precise measurement of the characteristic of the lens as produced is necessary.
- A commercial lens with known properties has been used as benchmark of the test setup.
- Profile measurements with a knife-edge scanner confirm the expected performances.

4xSigma[a]			R=500 um M-Squared Dialog for BeamMap-C		X		View = -108 : Tilt = -21	
Clip[b] 13.5%				M^2_v 0.97				r -
Print Setup			2Wo_u 4.2 um Zo_u 1.8 um	2Wo_v 4.4 um Zo_v 1.9 um				
Load defaults			Zr_u 28.1 um	Zr_v 29.6 um				
M^2_u	0.94	0.97	Pt_X -67.1 mr Phi_u 150.6 mr NA_u 0.075	Pt_Y 18.7 mi Phi_v 148.9 mi NA_v 0.074	r 🖌			
NA 0.075 0.074				NA_V 0.074				
X2c 900.6 um								
Y2c -117.3 um			- 0.02 mm/div					
Zo_u 1.8 um 1.9 um			Wavelength = 532 nm					
Ellipticity 0.96			Toggle Centroid: [absolute]	Relative Power: 0.00	Full Range = 2		
2Wu1a 8.9 um		2Wu2a	4.3 um	2Wu3a	8.5 um	2Wu4a	5.0 um	
2Wu1b		8.9 um	2Wu2b	4.4 um	2Wu3b	8.7 um	2Wu4b	5.0 um
Zoom = 2X			Zoom = 2X		Zoom = 2X	Λ	Zoom = 2X	
Clip[b]		= 13.5%	Clip[b] 4×Sigma[a]	= 13.5%	Clip[b]	= 13.5%	Clip[b] 4xSigma[a]	= 13.5%
.4×Sigma[a]		= 13.5%		= 13.5%	4xSigma[a]	= 13.5%		= 13.5%
Scale = 5.0 um/div			Scale = 5.0 um/div zplane = -1 um		Scale = 5.0 um/div zplane = 50 um		Scale = 5.0 um/div zplane = 0 um	
Peak = 41.3 % base = 4.9 % Gain = 12.0 dB + 4.4 dB			Peak = 44.7 % base = 4.9 %		Peak = 62.9 % base = 4.9 %		Peak = 99.1 % base = 4.9 %	
1	Gain = 12	2.V 013 + 4.4 013	Ga	in = 10.0 dB + 4.0 dB	Gain = 14.0 dB + 2.4 dB		Gain = 10.0 dB + 0.0 dB	

Laser development

- Need a high power high repetition rate laser
- Mode quality is very important to achieve good resolution
- => Fibre laser technology with chirped pulse amplification (CPA) best suited for our needs.
- Currently discussing possible systems with several companies

Outlook

- Two laser-wire prototypes are now operational for ILC related R&D
- 2D scans will soon be attempted with the PETRA system
- Strong focusing lens (f/2) performances are being measured
- ATF LW mechanical hardware is being upgraded for the installation of the strong focusing lens
- Laser technology & design have been chosen