

Status of the Precision Beam Position Monitor (PBPM) for EUROTeV

L. Soby, I. Podadera Aliseda AB-BI-IP

08-01-2007

Daresbury- European LC workshop

Measurement of the beam position and current in the main linac (attached to the quadrupoles) of the next generation colliders (ILC and CLIC) with the specifications:

- Resolution:100 nm.
- Aperture: 4-6 mm.
- Absolute precision: 10 μm.
- Rise time: 15 ns.

Important parameter for the beam-based alignment

PBPM-specifications

	Aperture	4mm						
EUPOTaV	Resolution	100nm						
EUNUIEV	Absolute precision	10µm						
	Rise time	<15ns						
	Dynamic range	±1.5mm (15 bits)						
	Linearity error	< 1% (±1.5mm)						
	24H stability	1µm						
	Droop	< 5%						
Extended	Low frequency cutoff	100kHz (3.6% droop, CLIC 58ns pulse)						
specifications	High frequency cutoff	30MHz						
	CMRR	>90dB 150°C						
	Bake out temperature							
	Vacuum	10 ⁻⁹ Torr						
	Operating temperature	~20°C						

The design

From...

IPU at Clic Test Facility 3 (CTF3, CERN)

M. Gasior, An Inductive Pick-Up for Beam Position and Current Measurements, CERN-AB-2003-053-BDI PBPM

То...

6 (4) mm aperture

40 mm aperture

08-01-2007

Inductive pick-up: basic scheme

The electron beam induces an image current in the surrounding vacuum pipe...

... the beam position (image current distribution) is picked outside the vacuum by the signal combination transformed by current transformers from strip electrodes (inductances L_{Δ}). The transformers are loaded in the secondary by a resistor R_s

... the beam pipe is disrupted by a ceramics insertion in alumina which maintains the vacuum inside...

... a **body** shields the pick-up from environment perturbances...

... the low frequency cutoff is decreased by the addition of a ferrite external to the electrodes...

... the longitudinal impedance at high frequencies and the wakefields are limited by a titanium resistive coating in the internal face of the ceramics. Big enough to avoid signal losses at low frequencies and low enough for the impedance budget of the accelerator.

Aductive pick-up: basic scheme

PBPM planning

ID	Task Name	2005 2006								2007									
		Jan	Mar	May	Jul	Sep	Nov	Jan	Mar	May	Jul	Sep	Nov	Jan	Mar	May	Jul	Sep	Nov
1	PBPM			4															
2	Publish fellow post	7																	
3	Present work plan for EUROTeV	1		1															
4	Hire fellow	1				Ĭ,													
5	Design PBPM	1							h										
6	Simulate PBPM	1																	
7	Present design for EUROTeV	1								ŀ									
8	Fabrication drawings	1										h							
9	Fabrication of 1BPM	1												h.					
10	Tests on bench	1																	
11	Present Results for EUROTeV	1																	
12	Manufacture 3 PBPMs	1																	
13	Tests on bench	1															Ľ.	L	
14	Tests in CTF3	1																	1
15	Write report	1																	Ľ.
16	Send report to EUROTeV	1																	ľ
11 12 13 14 15 16	Present Results for EUROTEV Manufacture 3 PBPMs Tests on bench Tests in CTF3 Write report Send report to EUROTeV	-																	

According to the schedule!

Final design

Final design

Mechanical challenges

• Sputtering of the ceramics:

- Very small diameter.
- Deposition thickness of the coating proportional to distance titanium wire-ceramics wall: uniformity problems.

• Tight tolerances:

- Three reference planes in the body machined with at least 10 μm precision from the axis of the body. Very good precision of the mechanical center from the reference planes even without metrology.
- The mechanical axis of the electrodes is coaxial in 5 μm with the axis of the body. The offset between the mechanical and "electrical" center is minimized.
- Good coaxility coating-ceramics-electrodes to define a constant impedance along the coaxial line.

• Vacuum flanges:

- Beam tests in different machines to take into account (CTF3, ATF-2).
- Small flange in order to have small electrodes and pick-up. In addition it minimizes the cavity and resonances.
- Solution: small helicoflex seal (Ø7.7 x Ø10.9 mm) with screws adapted to standard CF-16.

• Use of SMC connectors instead of SMA.

PBPM electronics

Daresbury- European LC workshop

- Test IPU electronics and Passive front-end hybrid (radiation hard) to generate Δ and Σ signals (BW=100kHz-30MHz).
- Difference must have CMRR >95 dB (100nm over 6mm) to minimize offset error.
- ILC version must include 10MHz Bessel filter to dilute 1ps bunch to ~60ns.
- Fast 200MS ADC, 12 or more bits (or oscilloscope).

CMRR error

Electromagnetics simulations: validation and optimization of the design

Beam position linearity

HFSS model

- Position evaluated at a single frequency 10 MHz
- •Primary load resistance *R_P* of 100 mW for the 4 electrodes.
- •Complex substraction and sum of the S-parameters.
- •50 W wire system gives less accurate results in terms of linearity.

Sensitivity~0.128 (Δ/Σ) / mm

The accuracy of the simulation depends very much on the mesh (number of passes).

08-01-2007

 \mathbf{M}

Low frequency cut-off

Electrical model

Microwave

08-01-2007

Daresbury- European LC workshop

200

Time domain response

Time [µs]

Time (us)

100

80

40

Time [ns]

60

Ó

08-01-2007

Daresbury- European LC workshop

Longitudinal impedance (PSPICE model)

PBPM

IPU-CTF3

M. GASIOR, *LIMITING HIGH FREQUENCY LONGITUDINAL IMPEDANCE OF AN INDUCTIVE PICK-UP BY A THIN METALLIC LAYER*, CERN-AB-2004-090 CLIC Note 609

The increase in line impedances in the PBPM with respect to the simulated IPU version provokes some small dumps in the longitudinal impedance of the PBPM.

Preliminary assembly

2005

PBPM- deliverables

EUROTeV report prepared and to be published

• Report on bench tests:

- Design and build a mechanical stable test bench. **DONE!**
- Develop front end electronics.
- Measure PBPM prototype.

(middle 2007)

Report on beam tests:

• Build 3 PBPM's for beam tests at CTF3 or ATF-2 beam.

(end 2007)

2007

- Resolution with CLIC and ILC type beams (1.5A / 0.1A, 60ns pulse). Use of a network analyzer to obtain the information of the real and imaginary part (sinusoidal signals).
- Sensitivity and Linearity (in both planes and in diagonal).
- Electrical offset (with respect to the mechanical center).
- Position stability with respect to temperature fluctuations 15-25°C.
- 24 hours stability.
- Long term stability.
- Longitudinal impedance (50 W setup).

Final design

08-01-2007

Acknowledgments

Many thanks to all the people that help in this project!

R. Boudot, M. Gasior, F. Guillot-Vignot, V. Maire, B. Favrat, H. Mainaud-Durand, H. Neupert, S. Calatroni, T. Tardy, L. Leggiero, P. Frichot, T. Kroyer, F. Caspers, J. Belleman, S. Redaelli, J-M. Wickham, P. Odier...

08-01-2007

Daresbury- European LC workshop