

Limitation on precision luminosity measurement from beam-beam effects

European LC Workshop, January 8-9 2007, Daresbury Laboratory, UK

Cécile Rimbault, LAL Orsay

Luminosity measurement in the LumiCal using Bhabha scattering at small angles

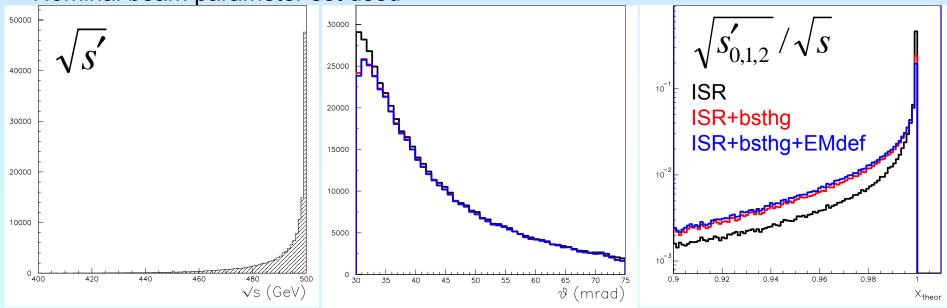
• Bhabha particles are detected in coincidence in the LumiCal covering a range of 26.2 to 82 mrad.

• $\mathcal{L} = N_{Bh} / \sigma_{Bh}$ from counting rate \rightarrow integrated luminosity (10⁻³ - 10⁻⁴)

• Measurement of energy and scattering angle of the Bhabhas → luminosity spectrum reconstruction using *ref. LC-PHSM-2000-60-TESLA from K. Mönig*

$$x_{th} = \frac{\sqrt{s'}}{\sqrt{s}} = \sqrt{1 - 2\frac{\sin(\theta_1 + \theta_2)}{\sin(\theta_1 + \theta_2) - \sin\theta_1 - \sin\theta_2}} = x_{exp}$$

Beam-Beam effects on Bhabha scattering


- Bhabhas produced with BHLUMI, $\sqrt{s} = 500$ GeV, 25< θ <90 mrad, **ISR included** Bhabha0
- Beam-Beam effect treatment with GUINEA-PIG
 - Modification of initial state: Beamstrahlung $\rightarrow \sqrt{s} \le \sqrt{s}$, $\Delta \theta_{ini} \ne 0$, $E_{elec} \ne E_{posit}$

Bhabha1

 Modification of final state: Electromagnetic deflections → bhabha angle reduction + small energy losses
Bhabha2

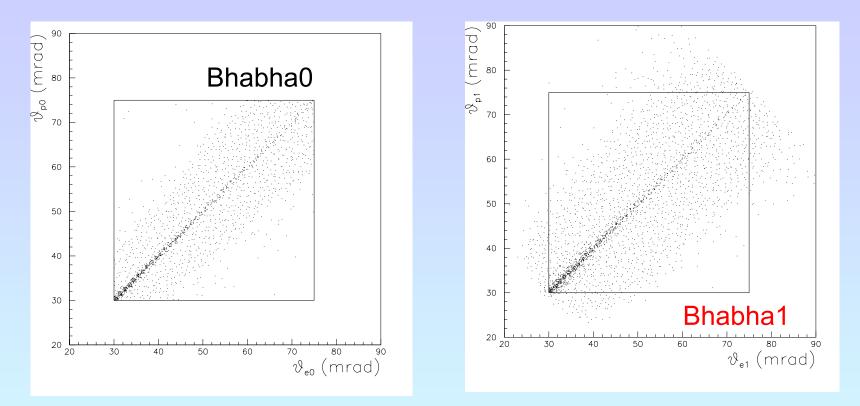
• selection cuts:
$$30 < \theta_{bhabha} < 75 \text{ mrad}, E_{bhabha} > 0.8 E_{beam}$$
.

Nominal beam parameter set used

Beam-Beam effects on integrated luminosity measurement: Bhabha counting suppression

Suppression of Bhabha particles inside the selection cuts $30 < \theta_{bhabha} < 75 \text{ mrad}$ and $E_{bhabha} > 0.8 E_{beam}$:

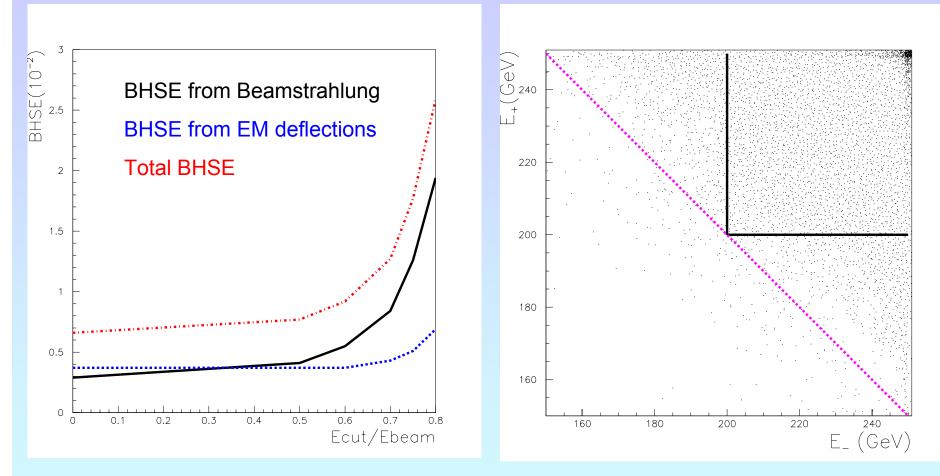
Due to modification of initial state = beamstrahlung: $(-3.78 \pm 0.04)\%$


Due to modification of final state = EM deflections: $(-0.65 \pm 0.02)\%$

Total BHabha Suppression Effect : (-4.41 ± 0.05)%

Why is there such an important BHSE ?

Beam-Beam effects on integrated luminosity measurement:


Bhabha counting suppression

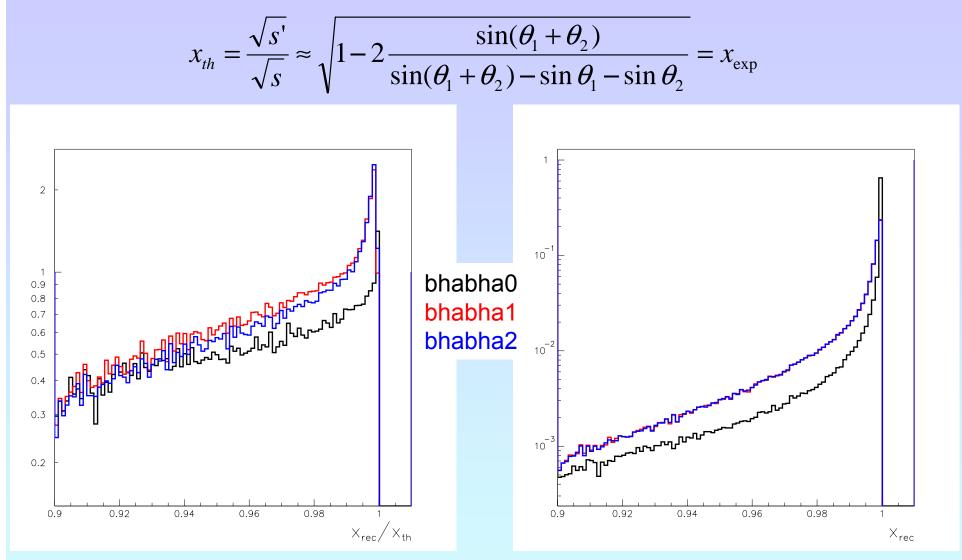
Beamstrahlung → enhancement of acolinearity. The angular cut should not be symmetric: new **asymmetrical** cuts 30 mrad< $\theta_{1,2}$ <75 mrad & 26.2 mrad< $\theta_{2,1}$ <82 mrad

ref. A. Stahl LC-DET-2005-004

Bhabha counting suppression

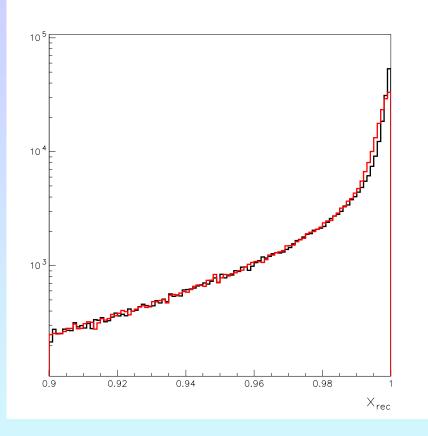
Beamstrahlung & EM deflections: Bhabha energy reduction + energy asymmetry enhancement \rightarrow use E₊ + E₋ > 0.8 \sqrt{s}

Beam-Beam effects on integrated luminosity measurement: Bhabha counting suppression


Suppression of Bhabha particles inside the selection cuts $30 < \theta_{bhabha} < 75 \text{ mrad}$ and $E_{bhabha} > 0.8 E_{beam}$:

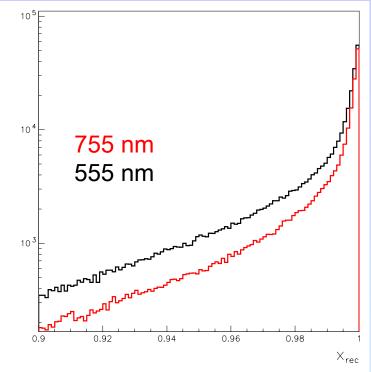
Due to modification of initial state = beamstrahlung: $(-3.78 \pm 0.04)\%$ Due to modification of final state = EM deflections: $(-0.65 \pm 0.02)\%$ Total BHabha Suppression Effect : $(-4.41 \pm 0.05)\%$

Suppression of Bhabha particles inside the selection cuts 30 mrad< $\theta_{1,2}$ <75 mrad & 26.2 mrad< $\theta_{2,1}$ <82 mrad and E₊+E₋ > 0.8 \sqrt{s} :


Due to modification of initial state = beamstrahlung: (-1.03 ± 0.04) %Due to modification of final state = EM deflections: (-0.48 ± 0.02) %Total BHabha Suppression Effect : (-1.51 ± 0.05) %

Reconstruction of luminosity spectrum from lumical - 1

Experimentaly EM deflections have no impact on the reconstructed lumi spectrum, using K. Mönig method.


Reconstruction of luminosity spectrum from lumical - 2

bhabha2 lumi spectrum bhabha2 lumi spectrum with error on angular reconstruction: σ_{θ} =0.13 mrad

Experimental angle resolution $\rightarrow \Delta < x_{rec} > / < x_{rec} > 5 \ 10^{-4}$

Evolution of the luminosity spectrum with beamstrahlung

modification of beamstrahlung with horizontal size, σ_x , of the spot beam

Should be possible to fit

σ _x [nm]	£ [μb ⁻¹]	<x<sub>theor></x<sub>	<x<sub>rec></x<sub>	BHSE [%]
555	1.8	0.9569	0.9762	-2.22
755	1.2	0.9628	0.9801	-1.14
Δ		6 10 ⁻³	4 10 -3	1 10 ⁻²

Summary

• Beam-beam effects on Bhabha scattering create acolinearity and energy asymmetry on the Bhabha particles. This leads to a **bias on the integrated luminosity measurement of few 10**-2

- BHSE mainly arises from beamstrahlung.
- The reconstructed luminosity spectrum in the LumiCal is almost not modified by EM deflections
- Angular resolution induces a relative error of 5 10⁻⁴ in the Luminosity spectrum reconstruction
- To reduce the bias on luminosity measurement to 10⁻³, we would need to reconstruct luminosity spectrum with a precision of 4 10⁻⁴

• To reduce the bias to 10⁻⁴, we would need to devise a method based on fitting reconstructed lumi spectrum; but since 10⁻⁴ is needed for the Giga-Z option, beam-beam effects may no longer be a problem...

Modified version of GUINEA-PIG available at: see G. Le Meur talk tomorrow morning.