Status of fast beam feedback systems

Philip Burrows

John Adams Institute Oxford University

- ILC fast feedback prototype at KEK ATF/ATF2
- ILC electromagnetic background tests at SLAC/ESA

FONT: Feedback On Nanosecond Timescales

Accelerator R&D for the International Linear Collider (ILC)

Daresbury/Oxford:

Philip Burrows Glenn Christian Hamid Dabiri Khah Tony Hartin Alexander Kalinin Colin Perry Javier Resta-Lopez

Graduate students: Christine Clarke Christina Swinson Ben Constance

DESY, CERN KEK, Tokyo Met, SLAC

P.N. Burrows

2

Eurotev Meeting, Daresbury 08/01/07

Overview

Task: prototype beam-based (intra-train) feedback systems

Completed: ultra-fast analogue feedback prototypes FONT2 / NLCTA: 54ns latency FONT3 / ATF: 23ns latency Originally developed in context of 'warm' LC, applicable to CLIC Ongoing: ILC digital feedback prototype FONT4 / ATF: digital FB processor tests w. 3 bunches FONT@ESA: EM background impact on FB BPMs

Future: Multibunch operations, algorithm tests FONT5: ATF2 or FLASH (Feed-forward)

IP Intra-train Feedback Concept

P.N. Burrows

ILC digital feedback prototype (FONT4)

FONT4 hardware

FONT4: beamline at KEK ATF (December 06)

FONT4: latency budget

 Time of flight kicker – BPM: 		7ns
 Signal return time BPM – kicker: 		15ns
Irreducible latency:		22ns
BPM processor:		7ns
 ADC/DAC (3.5 89 MHz cycles) 		40ns
 Signal processing (8 357 MHz cycles) 		s) 25ns
• FPGA i/o		3ns
Amplifier		40ns
Kicker fill time		3ns
Electronic	s latency:	118ns
• Total latency budget:		140ns
P.N. Burrows	8 Eurotev N	leeting, Daresbury 08/01/07

BPM processor

Digital Feedback Board

Beam test results (April – November 2006)

Kicker driver amplifier

Specifications:

- +- 15A (kicker terminated with 50 Ohm)
- +- 30A (kicker shorted at far end)
- 35ns risetime (to 90%)
- pulse length 10 us (specified for 20-60 bunches)
- repetition rate 10 Hz

Order placed with TMD Technologies September 22 1st prototype unit delivered December 1 2nd prototype unit delivered December 8 (5ns faster) Tested with beam at ATF week of December 11!

Kicker driver amplifier in beamline

13

Kick on beam with loop closed (Dec 15 2006)

FONT4 test plan

June 2006:

1st test of PCB version of analogue BPM processor
 2nd tests of digital FB: timing, synchronisation, triggering, gain adjustment in FPGA
 (ADC clocking @ 714/10 = 71 MHz)

December 2006:

1st test of FONT4 amplifier 3rd tests of digital FB: ADC clocking @ 357/4 = 90 MHz 2nd tests of PCB BPM processor Closed-loop FB

Through 2007: Closed-loop FB

P.N. Burrows

FONT5 test plan

The next major development would be FB tests using a long ILC-like train

(FONT4 amplifier was specified to allow this)

- ATF: depends on success of fast-extraction kicker tests, 2008/9?
- Would allow us to address robustness of FB algorithms: take into account bunch-bunch correlations along train adaptive gain as beam conditions change (drift) incorporate feed-forward information from upstream add beam-related 'luminosity' signal for fast scanning?
- Could in principle be done at FLASH

P.N. Burrows

FONT bench test system

Schematic ATF2 feedback layout: 1

Schematic ATF2 feedback layout: 2

combined x-y kickers

Schematic ATF2 feedforward layout: 1

ILC interaction region

P.N. Burrows

Nominal IP feedback hardware locations

P.N. Burrows

Pair-induced EM backgrounds

Pair-induced EM backgrounds

FONT Test Module for ESA

FONT Test Module (T-488)

Summary

- Hardware for ILC fast intra-train FB prototype has been built and tested with beam at KEK/ATF during 2006
- FB loop has been closed (December 2006)
- System will be further tested and optimised in 2007
- Planning for deployment of intra-train FB (+ FF) at ATF2
- Test system with long bunchtrain (ATF2, FLASH)
- Bench system for algorithm development + testing
- First beam tests of EM background environment for FB BPM at SLAC/ESA in 2006
 - further beam tests March + July 2007