

Fast Luminosity Monitoring - FLUM

C.Grah

European LC Workshop Daresbury, January 8th 2007

- > Very Forward Region and BeamCal
 - Changes since 2005
- Fast beam parameter reconstruction
 - Results for different setups
- Geant4 Simulation
- > Why we want to use a fast luminosity monitor...
- > Beamstrahlung photons
- > Summary

The Forward Region

08-Jan-2007

ilr

ĪĪĻ

C.Grah: FLUM

- 1. Minimize the amount of backscattered particles into the Inner Detector, while shielding QDO against pairs from beamstrahlung.
- 2. Highly efficient detection (veto) single high energetic electrons (photons) at lowest angles.
- 3. Provide a signal for the use of luminosity optimization and beamdiagnostics (main part of this talk).

Geometry for the new ILC baseline of

08-Jan-2007

Segmentation of the BeamCal Sensor

- > The efficient detection of single high energetic particles at lowest angles drives the segmentation needed of the very compact calorimeter. ($R_M \approx 1$ cm)
- The technical feasibility (channel number) is the tradeoff.
- > A smaller segmentation than 0.5 $\times R_M$ does not improve the efficiency. 0.8 $\times R_M$ decreases the veto performance only slightly at smallest radii.
- > We chose $0.8 \times R_{M}$ as the baseline for the beamdiagnostics simulation.

What else can we learn about the collision?

- The spatial distribution of the energy deposition from beamstrahlung pairs contains a lot of information about the collision.
- > Use a **fast** algorithm to extract beam parameters like:

```
beam sizes (\sigma_x, \sigma_y and \sigma_z)
emittances (\epsilon_x and \epsilon_y)
offsets (\Delta_x and \Delta_y)
waist shifts (w_x and w_y)
angles and rotation (\alpha_{h,} \alpha_v and \varphi)
Particles per bunch (N_b)
```

Concept of the Beamstrahlung Pair Analysis

Moore Penrose Method

- > Observables (examples):
 - total energy

ilr

- first radial moment
- thrust value
- angular spread
- $E(ring \ge 4) / Etot$
- $r-\phi$ observables T1, T2
- E/N
- I/r, u/d, f/b asymmetries

detector: realistic segmentation, ideal resolution, bunch by bunch resolution

08-Jan-2007

Single parameter reconstruction

			2mrad		14mrad DID		14mrad antiDID	
Parameter	Unit	Nom.	μ	σ	μ	σ	μ	σ
σ _x	nm	655	653.42	1.95	653.66	3.42	653.89	2.27
σ _γ	nm	5.7	5.208	0.371	5.464	0.520	5.395	0.229
σ	μm	300	300.75	4.56	306.60	5.13	299.83	4.11
ε _×	10 ⁻⁶ m rad	10	11.99	7.61	-	-	-	-
٤ _γ	10 ⁻⁹ m rad	40	40.41	1.29	40.22	1.19	40.72	1.19
Δx	nm	0	4.77	14.24	3.86	9.16	-3.24	10.70
Δγ	nm	0	0.44	0.66	-2.07	0.81	0.05	0.65
waistx	μm	0	-69	141	-230.	828.	218.	349.
waisty	μm	0	12	24	-6.	19.	19.	25.
N _{bunch}	10 ¹⁰ part	2	2.009	0.005	2.001	0.007	2.009	0.005

Beamparameters vs Observables slopes (significance) normalized to sigmas

08-Jan-2007

C.Grah: FLUM

- > BeCaS can be configured to run with:
 - different crossing angles (corresponding geometry is chosen)
 - magnetic field (solenoid, (Anti) DID, use field map)
 - detailed material composition of BeamCal including sensors with metallization, absorber, PCB, air gap
- It runs fast enough for a full shower simulation.

ilr

İİL

Geant 4 Simulation - BeCaS

Beamparameter Reconstruction

> Using the observables:

- Etot // (1) Total energy
- Rmom // (2) Average radius
- Irmom // (3) radial moment
- UDimb // (4) U-D imbalance
- RLimb // (5) R-L imbalance
- Eout // (6) Energy with r>=6
- PhiMom // (7) Phi moment
- NoverE // (15) N/E

Only minor reduction in resolution when using 1-2 layers of BeamCal.

08-Jan-2007

C.Grah: FLUM

Fast Luminosity Monitoring

- > Why we need a fast signal from the BeamCal?
- > We can significantly improve L!
- e.g. include number of pairs hitting BeamCal in the feedback system

GamCal – Using Photon Information

- > Use as much information about the collision as possible.
- BeamCal measures the energy of pairs originating from beamstrahlung.
- GamCal will measure the energy of the beamstrahlung photons.
- Define a robust signal proportional to the luminosity which can be fed to the feedback system!

ilr

İİL

Investigate correlation to learn how we can improve the beamdiagnostics.

08-Jan-2007

C.Grah: FLUM

B.Parker, ILC ECFA Meeting

complementary information from

- 1. total photon energy vs offset_y
- 2. BeamCal pair energy vs offset_y

ratio of E_pairs/E_gam vs offset_y is proportional to the luminosity

similar behaviour for angle_y, waist_y ...

see also: EUROTeV-Memo-2006-011

08-Jan-2007

21

- > The geometry of the forward region was adjusted to the case of a large crossing angle.
- > We investigated the impact of a change in the segmentation on the electron veto efficiency. 0.8 R_M is still good and reduces the total channel number.
- Tested the fast beam parameter reconstruction for 2, 14 and 20 mrad configurations with DID/AntiDID field.
- A Geant4 simulation of BeamCal (BeCaS) is ready for usage. It is fast enough, so that we do not need a shower parametrization.
- First tests show that a subset (some layers) of the detector information seems sufficient for beam parameter reconstruction.
- Complete/optimize observable definition and include digitization.
- Complete 14mrad study
- Use the Real Beam simulation data.
- GamCal could provide valuable information about the collision
 - partly complementary to BeamCal information
 - E_{pair}/E_{v} is a signal proportional to the luminosity for several beam parameters

İİL