### Short Summary of ILPS Progress in 2006

D. Schulte

- Only most important achievements are given
- $\Rightarrow$  Will have to skip lots of important details

## COLSIM

• Collimation system performance studies

RHUL

- Improvements of BDSIM
  - beta testing completed
  - $\Rightarrow$  first release in February
  - $\Rightarrow$  user guide published
- Benchmarking of BDSIM electromagnetic and hadronic processes against MARS15 and STRUCT
- BDSIM is widely used
  - $\Rightarrow$  e.g. application to LHC
- 2 and 20 mradian crossing angle interaction regions implemented in BDSIM
  - $\Rightarrow$  beam loss from pairs and radiative Bhabhas studied

#### Manchester

- Implementation of wakefields in MERLIN and related studies continued
- Energy deposition in collimator simulated with BDSIM and compared to EGS and FLUKA

CERN/IFIC

- CLIC non-linear collimation system performance has been studied
  - $\Rightarrow$  new optimised system has much better performance than previous version
  - $\Rightarrow$  close to linear system
  - $\Rightarrow$  trade-off efficiency and damage potential
  - $\Rightarrow$  comparison of wakefield effects in both systems
  - $\Rightarrow$  option for LHC

DESY

• Work shifted to 2007 due to RDR

## FMSIM

DESY

CERN

- Indentification, study and possibly mitigation of key failure modes
- Simulations performed of losses due to
  - coherent RF phase errors along the linac
  - quadrupole failures
- $\Rightarrow$  Single quadrupole failure acceptable
- $\Rightarrow$  large RF phase error (50°) needed to have losses
- $\Rightarrow$  loss density acceptable in cavities
  - Simulation of losses due to RF phase error in ILC
    - $\Rightarrow$  good agreement with DESY results

## BCDES

- Design of a bunch compressor and a path length tuning chicane suitable for multi-TeV
  - severe problem is coherent synchrotron radiation
- Bunch compressor systematically optimised
  - CSRTrack simulation cross checked with ELEGANT
  - $\Rightarrow$  achieves goal
- Tolerance study yielded first, good results
- After the turn around, the CLIC drive beam needs to be compressed in length and adjusted in phase (by feed forward)
- System consists of compressor chicane, turn-around, compressor chicane
  - the first is also used to measure phase errors the second to correct it
- Decided to include the turn-around loop since it is integral part of the whole system
- New turn-around loop has been designed
  - $\Rightarrow$  emittance growth close to specification
  - $\Rightarrow$  further improvement studied
- The compression chicanes have been designed

## PCDL

- Studies of the ILC post collision line
- Contribution to the development and validation of BDSIM
- Severe computational resources requirements
  - $\Rightarrow$  installation on the grid
  - $\Rightarrow$  many "small" technical problems needed to be solved
- Photon backscattering due to local losses in post collision line has been investigated
  - $\Rightarrow$  background rates in detector seem OK
  - $\Rightarrow$  comparison to other SLAC simulations showed good agreement

# PCDL (Cont.)

Uppsala

- Development of a post collision line suitable for multi-TeV collisions
  - very tough because of coherent pairs and large energy loss
- Last year has been focused on benchmarking the tools
- $\bullet$  Test if 20mradian ILC extraction line is suitable for CLIC

 $\Rightarrow \mathsf{no}$ 

- Test if line can be adopted
  - $\Rightarrow$  not really, loose all benefits
- A new design has been developed
  - $\Rightarrow$  vertical bends to separate beam particles, coherent pairs, beam strahlung
  - $\Rightarrow$  should allow to include instrumentation
- Further study of losses and instrumentation options is ongoing

## HTGEN



- Goal is to provide estimates of halo and tails
- And a library that allows to include realistic distributions in other codes
- Implemented beam-gas scattering with Mott and Bremsstrahlung process
  - $\Rightarrow$  integrated into PLACET and available for MERLIN
- Fast and precise synchrotron radiation generator
  - $\Rightarrow$  implemented in GEANT4
- Secondary tracking in PLACET
  - tracking of secondary photons
  - loss detection
  - simple multiple scattering in collimator jaws
- Studied impact of multipoles and dark current in ILC
- $\bullet$  close collaboration with COLSIM

# BBSIM

LAL+some support from CERN

- Benchmarking and improving of GUINEA-PIG
- 2005 comparison of CAIN and GUINEA-PIG published in PRST-AB in 2006
- $\bullet$  Translated (most of) GUINEA-PIG to C++
  - $\Rightarrow$  should ease modifications
  - $\Rightarrow$  plan to study potential of parallelisation
- Bhabha scattering implemented in new GUINEA-PIG and studied
  - vital for luminosity spectrum reconstruction and fast luminosty measurement
  - combined external generator and GUINEA-PIG
  - impact of deflection by beams studied
  - impact on the fast luminosity measurement studied
- $\Rightarrow$  Need good knowledge of beam parameters to correctly measure luminosity
- $\Rightarrow \mathsf{Need} \ \mathsf{non-symmetric} \ \mathsf{cuts}$

## LAST

DESY

- Integrated simulations of luminosity performance
- Successful benchmarking with other tracking codes
- Package for dispersion free steering developed for MERLIN
  - allows different options to generate different energy beams
- Developed package to simulate dynamic effects in MERLIN
  - integration GUINEA-PIG and MERLIN
  - almost ready
  - $\Rightarrow$  results in early 2007

- Improvement of PLACET
  - longitudinal motion, collimator wakefields, user interface (e.g. embedded OCTAVE), code structure, parallel code (to be continued in 2007)
- Package to study impact of dynamic imperfections during the application of dispersion free steering developed for PLACET
  - $\Rightarrow$  first results are positive
- Provided program implementing A. Seryi's ground motion model
- Detailed and systematic studies of dispersion free steering in the ILC and CLIC main linac, also for a curved tunnel performed
- Benchmarking with other codes performend successfully
- Proposed and studied use bunch compressor RF phase to generate beams for DFS
- Design, optimisation study of realistic knobs for ILC and CLIC
- Together with CERN RF experts developed new basic CLIC parameter set
- Started integrated simulations of dynamic imperfection in ILC and CLIC
  - e.g. micado, localised feedback systems and one-to-one correction in main linac, quadrupole jitter and ground motion including ML, BDS and beam-beam

### $\mathsf{QMUL} \to \mathsf{Oxford}$

- Development of the alignment and tuning procedure for the ILC BDS
  - $\Rightarrow$  world leading study
  - $\Rightarrow$  came very close to achieving target (average at target for 90% level)
    - lost the RA to SLAC, where he achieved goal
- Development and study of BDS feedback
  - $\Rightarrow$  angle feedback integrated into new lattice
  - $\Rightarrow$  use of train straightener as end of linac intra-pulse feedback
  - $\Rightarrow$  simulations of luminosity performance with static and dynamic effects and feedback
- Study of the background in the feedback BPM

## Conclusion

- In spite of some problems progress has been very good
- While effort on development and benchmarking of tools had been maintained tools have been applied more
- Design of beam lines has progressed very well