

RTML Tuning

Jeffrey C. Smith, Cornell Daresbury LET meeting 11th, Feb. 2007

20 July 2006

Global Design Effort

The lattice used

İİL

- RTML lattice
 - Not the current lattice!
 - turnaround FODO cells have changed to reduce phase advance
 - New skew quad correction before 4D mesurement
 - 5 Gev LET transport from DR
 - New lattice being finished this < week.

View Universe:

The lattice used

- Filamentation is defined here as the phase advance error for a 1 sigma off-energy particle.
- The filamentation rate is the filamentation per unit phase advance (says where filamentation is increasing the fastest)
- Chromaticity and Filamentation is a slight problem in this lattice
 - Will be fixed in new lattice

Alignment tolerances used

- Just looking at RTML up to bunch compressor.
 - This is all warm (except for solenoids)
- Misalignments used (based on FFTB tolerances):
 - Quads:

ΪĹ

- 150 µm RMS offsets in x and y
- 0.25% strength errors
- 300 µrad rotation errors
- Bends:
 - 0.5% strength errors
 - 300 µrad rotation errors
- Solenoids
 - 1% strength error
- BPMs:
 - 0 um resolution (for starters)
 - 7 µm RMS offsets x and y to nearest quad
 - No rotations or scale errors
- Laser Wire Scanners:
 - 0% error on measurement on each wire
 - 0 degree angle error on skewed wire

Dispersion Bumps

- In original RTML (before Valencia) the dispersion bumps consisted of pairs of quadrupoles separated by a -1 transport in the turnaround.
 - Horizontal bumps were pairs of quads to adjust dispersion (but orbit change is zero outside bump).
 - Vertical bumps were pairs of skew quads to couple the horizontal dispersion in the turnaround into the vertical (again, orbit change is zero outside bump).
- With the new layout there is a vertical dogleg (with vertical dispersion) to bring the beam down from the ceiling to the level of the turnaround (and main linac).
 - So now, the vertical dispersion bumps are located in this dogleg and are pairs of normal quads -1 apart, working similar to the horizontal bumps above.

Dispersion correction

- Studies by PT and Kubo-san have shown that a combination of Kick Minimization and Dispersion Bumps can zero emittance growth due to dispersion.
 - Kubo-san's talk will discuss this
- Kick Mimimization in ILCv doesn't work as well for me (I think I know why) so I have been using Ballistic Alignment and Dispersion bumps combinations which works slightly worse

20 July 2006

Global Design Effort

Skew Correction

 Four Skew quadrupoles phased properly can eliminate all four coupling components: <xy>, <x'y>, <xy'> and <x'y'>

IIL

4D Emittance Measurement

6 Wire scanners
properly phased can
measure all four
coupling parameters
plus the three beam
parameters for x and
y (alpha, beta and
epsilon)

IIL

10

Wire Scanner minimum Beam Size

 Minimum vertical beam size at wire scanners is 3 microns.

Global Design Effort

Coupling Parameter Calculation

- Three wires in wire scanner that measure the beam size along three axis: x, y and u
- These three beam measurements can be used to calculate the x-y coupling parameter <xy>
- The angled wire measures the beam size along a skewed axis so a rotational transformation relates the skewed wire measurement to the other wire measurements

$$\sigma_{uv} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \cdot \sigma_{xy} \cdot \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
$$\sigma_{uv}^{11} = \sigma_{xy}^{11} \cos^2\theta + \sigma_{xy}^{22} \sin^2\theta + 2\sigma_{xy}^{12} \sin\theta \cos\theta$$
$$\langle xy \rangle = \frac{\sigma_{uv}^{11} - \sigma_{xy}^{11} \cos^2\theta - \sigma_{xy}^{22} \sin^2\theta}{2\sin\theta\cos\theta}$$

Beam Parameter Calculation

- <xx> and <yy> are measured at the last three wire scanners each about 45 degrees apart
- The relation between the <xx> measured at each wire is described by the transfer matrix, R, between the wire scanners:

$$\sigma_2^{11} = \sigma_1^{11} R_{11}^2 + 2\sigma_1^{12} R_{11} R_{12} + \sigma_1^{22} R_{12}^2$$

 If <xx> is measured at three wires and the wires are approximately 45 degrees apart then the full sigma matrix can be found at one of the wires:

$$\begin{pmatrix} \sigma_{1}^{11} \\ \sigma_{2}^{11} \\ \sigma_{3}^{11} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ (R_{11}^{12})^2 & 2R_{11}^{12}R_{12}^{12} & (R_{12}^{12})^2 \\ (R_{11}^{13})^2 & 2R_{11}^{13}R_{12}^{13} & (R_{12}^{13})^2 \end{pmatrix} \cdot \begin{pmatrix} \sigma_{1}^{11} \\ \sigma_{1}^{12} \\ \sigma_{2}^{22} \\ \sigma_{1}^{2} \end{pmatrix}$$

• From the sigma matrix alpha, beta and epsilon can be found.

$$\sigma^{11} = \epsilon\beta; \quad \sigma^{12} = -\epsilon\alpha; \quad \sigma^{22} = \epsilon \frac{1+\alpha^2}{\beta}$$

Coupling Correction Technique

- Found that the system is rather non-linear
 - 4 independent knobs that adjusts the 4 coupling measurements separately was not found to work well. Couldn't find orthogonal knobs.
 - Likewise, simple scans doesn't work well for me, system is too non-linear
 - Using a non-linear optimizer (Levenberg-Marquardt)
 - 4 data points (<xy>, <xy'>, <x'y>, <x'y'>)
 - 4 Variables (the 4 skew quads)
 - Find response matrix then iterate Levenberg Marquardt 10 times, then repeat twice more

– I'm not performing an emittance calculation

 The problem is the coupling correction interferes with the dispersion bumps

RTML: 1-1, BA, x and y bumps, skew LM 20061206

The problem with the skew correction

- The skew correction as it stands is a global correction
- Adjusting the skew quads will introduce orbit deflections and dispersion through the RTML
 - This screws up the dispersion bumps because they too are global corrections
 - Also, the skew correction will introduce large chromatic emittance growth which cannot be easily removed
 - Basically, in certain seeds, the dispersion bumps and skew correction work against each other.
 - Keep in mind that sometimes the skew correction works OK and most times doesn't degrade emittance by much. However, sometimes it really degrades emittance.

20 July 2006

Global Design Effort

- The skew correction is now a local correction.
- Also found that simple scans works very well in this case. RTML: 1-1, BA, bumps, skew LM, BA, bumps, skew LM LOCALSKEW 20060824

Global Design Effort

Tuning off of <yy>

- The current design has fewer wire scanners and cannot measure all four coupling parameters. The thought being we can tune coupling off of the <yy> measurements (and the emittance calculation).
- Will this work? I tried this earlier and it didn't work well. But my algorithm has changed since then, so maybe it'll work now.
- For this test I first zeroed the energy spread to eliminate all sources of emittance other than coupling. Then I ran my coupling correction (using levenberg-Marquardt) after inserting all errors.

 This is optimizing off the normalized coupling terms like I always do: <xy>/sqrt(<xx><yy>)

RTML: 1-1, BA, bumps, skew LM (opt on <xy>) 20061204

20 July 2006

IIL

Global Design Effort

Exact same test except optimizing off of <yy>.
To keep everything else constant, the same four
wire scanners are used. RTML: 1-1, BA, bumps, skew LM (opt on <yy>) 20061208

 I normally use <xy>/sqrt(<xx><yy>) which normalizes the coupling measurement and removes the sensitivity to changes in emittance. What if I use <xy>?

Global Design Effort

<xy> is better

- Using the <xy> measurement appears to work better
- This is in the absence of measurement errors and other sources of emittance.
- If those were added in, I would guess the situation would only be worse.
- In principle optimizing off of <yy> should work. It just appears to be more difficult.
 - I suspect it's due to two causes:
 - More complex function space.
 - Not optimizing to zero measurement
 - <xy> goes to 0.0 but <yy> goes to nominal value
- Keep in mind that optimizing on <yy> should work, it just appears to be more difficult

Including wire scanner errors

- Included error on wire scanner <xx>, <yy>, <uu>
- Error on <xy> will about 1.73 times this error.
- About 2% error before appreciable degradation in performance. – This is tight!
- This data while using optimizer

IIL

- might work better using scans since there is a fitting of a curve to the data (smoothing out the noise).
- Vertical Normalized Projected Emittance Just thought of this so haven't tested it yet!

RTML: 1-1 then skew with wire scanner error 20070103

Including wire scanner errors

- When using skew scans the results appear to be different when using wire scanner errors.
- Preliminary results shows that a larger measurement error may be used.
 - Just requires more iterations to converge than no errors.

İİL

- Global skew correction can be tricky and doesn't work well in the presence of other global emittance corrections
 - Simple skew scans doesn't work in this case
 - Need to use non-linear optimizer
- Simple skew scans will work for a local skew correction
- Optimizing off of <xy> works much better than <yy>
 - The other wire stations can be added in without changing the optics of current RTML design
- Tolerances on wire scanner measurement errors appears to be tight
 - Even tighter if performing emittance measurement (per Woodely & Emma)