

Implementation of Higher Order Mode Wakefields in MERLIN

Adriana Bungau and Roger Barlow

The University of Manchester

European LC Workshop Daresbury, 8-11 January 2007

Content

- Wakefields in a collimator
 - basic formalism
 - implementation in Merlin
 - example: a single collimator
- Wakefields due to the ILC-BDS collimators
 - emittance dilution
 - luminosity
- Wake functions in ECHO 2D
- Conclusion

Introduction

- Extensive literature for wakefield effects and many computer codes for their calculations
 - concentrates on wake effects in RF cavities (axial symmetry)
 - only lower order modes are important
 - only long-range wakefields are considered
- For collimators:
 - particle bunches distorted from their Gaussian shape
 - short-range wakefields are important
 - higher order modes must be considered (particle close to the collimator edges)

Wake Effects from a Single Charge

• Investigate the effect of a leading unit charge on a trailing unit charge separated by distance s

- the change in momentum of the trailing particle is a vector w called 'wake potential'
- w is the gradient of the 'scalar wake potential': $w=\nabla W$
- W is a solution of the 2-D Laplace Equation where the coordinates refer to the trailing particle; W can be expanded as a Fourier series:

W (r, θ , r',s) = $\sum W_m(s)$ r'^m r^m cos(m θ) (W_m is the 'wake function')

- the transverse and longitudinal wake potentials $w_{\rm L}$ and $w_{\rm T}$ can be obtained from this equation

The Effect of a Slice

- the effect on a trailing particle of a bunch slice of N particles all ahead by the same distance s is given by simple summation over all particles in the slice

- if we write: $C^m = \Sigma r'^m \cos(m\theta')$ and $S^m = \Sigma r'^m \sin(m\theta')$ the combined kick is:

$$\begin{split} & w_z = \Sigma \ W'_m(s) \ r^m \left[\ C^m cos(m\theta) - S^m sin(m\theta) \right] \\ & w_x = \Sigma m \ W_m(s) \ r^{m-1} \left\{ C^m cos[(m-1)\theta] + S^m sin[(m-1)\theta] \right\} \\ & w_y = \Sigma m \ W_m(s) \ r^{m-1} \left\{ S^m cos[(m-1)\theta] - C^m sin[(m-1)\theta] \right\} \end{split}$$

- for a particle in slice *i*, a wakefield effect is received for all slices $j \ge i$:

$$\Sigma_{j} \mathbf{w}_{x} = \Sigma_{m} \mathbf{m} \mathbf{r}^{m-1} \{ \cos [(\mathbf{m}-1)\theta] \Sigma_{j} \mathbf{W}_{m}(\mathbf{s}_{j}) \mathbf{C}_{mj} + \\ \sin [(\mathbf{m}-1)\theta] \Sigma_{j} \mathbf{W}_{m}(\mathbf{s}_{j}) \mathbf{S}_{mj} \}$$

Changes to MERLIN

Previously in Merlin:

- Two base classes: WakeFieldProcess and WakePotentials
 - transverse wakefields (only dipole mode)
 - longitudinal wakefields

Changes to Merlin

- Some functions made virtual in the base classes
- Two derived classes:
 - SpoilerWakeFieldProcess does the summations
 - SpoilerWakePotentials provides prototypes for W(m,s) functions (virtual)
- The actual form of W(m,s) for a collimator type is provided in a class derived from SpoilerWakePotentials

Example

Tapered collimator in the diffractive regime:

 $W_m(z)=2~(1/a^{2m}$ - $1/b^{2m})$ exp (-mz/a) $\Theta(z)$

Simulations

Entries 100001

Mean x -4.164e-06

Mean y 1.788e-05

RMS x 0.0006429

RMS y 8.496e-06

0.002

z (mm)

0.001

SLAC beam tests simulated: energy - 1.19 GeV, bunch charge - 2*10¹⁰ e⁻

Collimator half -width: 1.9 mm

change much the result

• the effect on the bunch tail is significant

Application to the ILC - BDS collimators

- beam is sent through the BDS off-axis (beam offset applied at the end of the linac)

- parameters at the end of linac:

 $\beta_x = 45.89 \text{ m} \qquad \epsilon_x = 2 \ 10^{-11} \qquad \sigma_x = \ 30.4 \ 10^{-6} \text{ m}$ $\beta_y = 10.71 \text{ m} \qquad \epsilon_y = 8.18 \ 10^{-14} \qquad \sigma_y = \ 0.9 \ 10^{-6} \text{ m}$

-interested in variation in beam sizes at the IP and in bunch shape due to wakefields

ILC-BDS colimators

Ν	Name	Туре	Z (m)	Apertur
1	CEBSY1	Ecollimator	37.26	e ~
2	CEBSY2	Ecollimator	56.06	~
3	CEBSY3	Ecollimator	75.86	~
4	CEBSY	Rcollimator	431.41	~
5	SP1	Rcollimator	1066.61	x99y99
6	AB2	Rcollimator	1165.65	x4y4
7	SP2	Rcollimator	1165.66	x1.8y1.0
8	PC1	Ecollimator	1229.52	x6y6
9	AB3	Rcollimator	1264.28	x4y4
10	SP3	Rcollimator	1264.29	x99y99
11	PC2	Ecollimator	1295.61	x6y6
12	PC3	Ecollimator	1351.73	x6y6
13	AB4	Rcollimator	1362.90	x4y4
14	SP4	Rcollimator	1362.91	x1.4y1.0
15	PC4	Ecollimator	1370.64	x6y6
16	PC5	Ecollimator	1407.90	хбуб
17	AB5	Rcollimator	1449.83	x4y4

No	Name	Туре	Z (m)	Aperture
18	SP5	Rcollimat	1449.84	x99y99
19	PC6	Ecollimat	1491.52	x6y6
20	PDUMP	or Ecollimat	1530.72	x4y4
21	PC7	or Ecollimat	1641.42	x120y10
22	SPEX	or Rcollimat	1658.54	x2.0y1.6
23	PC8	Ecollimat	1673.22	x6y6
24	PC9	or Ecollimat	1724.92	x6y6
25	PC10	or Ecollimat	1774.12	x6y6
26	ABE	or Ecollimat	1823.21	x4y4
27	PC11	or Ecollimat	1862.52	x6y6
28	AB10	or Rcollimat	2105.21	x14y14
29	AB9	or Rcollimat	2125.91	x20y9
30	AB7	or Rcollimat	2199.91	x8.8y3.2
31	MSK1	or Rcollimat	2599.22	x15.6y8.0
32	MSKCRAB	er Ecollimat	2633.52	x21y21
33	MSK2	Rcollimat	2637.76	x14.8y9

Emittance dilution due to wakefield

- beam size at the IP in absence of wakefields:

 $\sigma_{\rm y} = 5.69^{*}10^{-9} \,{\rm m}$

- wakefields switched on -> an increase
 in the beamsize
- higher order modes are not an issue
 when the beam offset in increased up
 to 0.25 mm
- from 0.3 mm beam offset, higher order modes become important
- beam size for an offset of 0.45 mm:

$$\sigma_x = 1.70^* 10^{-3} \text{ m}$$

$$\sigma_v = 4.77^* 10^{-4} \text{ m}$$

Luminosity loss due to wakefields

- luminosity in absence of wakefields: $L = 2.03^{*}10^{38} \text{ m}^{-2} \text{ s}^{-1}$
- at 0.25 mm offset: L~ 1034
- at 0.45 mm offset: L~10²⁹
 - -> Catastrophic!

How far from the axis can be the beam to avoid a drop in the luminosity from L~10³⁸ to L~10³⁷ m⁻² s⁻¹ ?

Emittance dilution for very small offsets

Luminosity

- Luminosity is stable ($L \sim 10^{38}$) for beam offsets up to 16 sigmas
- At beam offsets of 45 sigmas (approx. 40 um) luminosity drops from $L\sim10^{38}$ to $L\sim10^{37}$
- -> contribution from higher order modes is very small when beam is close to the axis

Extracting Delta Wakes from EM simulations

- Problem: how to extract delta wakes used by Merlin, Placet, etc. from bunch wakes available from EM simulations
- Wake functions W_m(s) depend on component. Give variation with longitudinal co-ordinate s=z₁-z₂. (Variation with transverse coordinates specified by axial symmetry and Maxwell's equations)
- Analytic formulae available but only for some shapes and with arguable regions of validity
- EM simulators (ECHO, GDFIDL, HFSS etc) give wake functions due to bunches with some finite $\boldsymbol{\sigma}$
- Taking limit of small σ needs small mesh size and computing time explodes

Tapered collimator

- Radius a=0.2 cm
- Beam pipe b=1.9 cm
- 10 cm long

Analytic formulae

 $W_{m}(s)=2(1/a^{2m}-1/b^{2m})exp(-ms/a)$ (Zotter & Kheifets)

s

1.0

2.0

EM simulation

- mode=1 mode=2 -5.0e+07 99 ≩ ≥ • Simulated using -2.5e+08 -2000 Echo-2D (Igor -0.5 0.0 -0.5 0.0 0.5 1.0 1.5 0.5 1.0 1.5 Zagorodnov) s s
- Gaussian beam, s=0.1 cm

Fourier Deconvolution

 $W_{bunch}(s,m)=W_{delta}(s,m)\otimes Gaussian$

- Take FT of ECHO result and FT of Gaussian
- Divide to obtain FT of delta wake

Back-transform.

- Horrible! But mathematically correct
- Due to noise in spectra. Well known problem

FT of bunch

Try simple Inverse Filter

Cap factor 1./FTdenom(k) at value gamma gamma=5 seems reasonable

Reconstructed delta wakes

- Compare with analytic formula
- Qualitative agreement on increase in size and decrease in width for higher modes
- Positive excursions not reproduced by formula
- Still problems with deconvolution: hard to synthesise necessary step function when higher modes damped

Next steps

- Use more sophisticated filter, incorporating causality (W(s)=0 for s<0)
- Compare simulations and formulae and establish conditions for validity
- Delta wakes extracted from simulations usable in Merlin (numerical tables) for collimators where analytical formulae not known
- Extend to non-axial collimators.