ILC BDS Beam-Based Alignment and Tuning

Glen White / SLAC
ELC Workshop, Daresbury Jan 2007

Overview

- Demonstrate can tune-up ILC BDS from expected post initial survey conditions to nominal luminosity.
- Try and "keep it real".
- Simulation models:
- Magnet - BPM alignment.
- Beam-Based alignment using magnet movers.
- Luminosity tuning using Sextupole multi-knobs.
- 5-Hz trajectory feedback to maintain orbit in FFS Sextupoles.
- Only 1 side of BDS modeled here.

Simulation Model

- Use Matlab + Lucretia. (ILC2006c lattice)
- Beam model:
- Single bunch tracking, 80,000 macro-particles.
- Single ray used where possible.
- Tuning performed on luminosity calculated by colliding bunch with itself with GUINEA-PIG.
- 5-Hz Feedback:
- 5 x - and y - sextupole BPMs + 6 correctors.
- ~50-pulse convergence gain.
- Error sources from BPM + kicker resolutions (no GM).
- Initial beam:
- Beam enters BDS on-axis with $10 \mathrm{um} / 34 \mathrm{~nm}$ horizontal/vertical normalised emittances (6nm vertical emittance-growth budget).

Final Doublet Model

- The final Quad/Sext/Oct doublet (Final Cryomodule String FCMS) is modeled here thus:

- Octupoles modeled as thin lenses within Sextupoles (actually co-wound).
- FCMS misaligned \& relative misalignment of magnets within also.
- FCMS is aligned with the 2 BPMs shown using external movers on the whole assembly.
- In alternate scenario, this can be split in two (not modeled here), in which case SF1/QF1 and SD0/QD0 could be independently moved.

Error Parameters

Initial Quad, Sext, Oct x/y transverse alignment	200 um
Quad, Sext, Oct roll alignment	300 urad
Initial BPM-magnet field center alignment	30 um
dB / B for Quad, Sext, Octs (RMS)	$1 \mathrm{e}-4$
Mover resolution (x \& y)	50 nm
BPM resolutions (Quads)	1 um
BPM resolutions (Sexts)	100 nm
Power supply resolution	$14-\mathbf{b i t}$
FCMS: Assembly alignment	$200 \mathrm{um} / 300 \mathrm{urad}$
FCMS: Relative internal magnet alignment	$10 \mathrm{um} / 100 \mathrm{urad}$
FCMS: BPM-magnet initial alignment (i.e. BPM-FCMS Sext field centers)	30 um
FCMS: Oct - Sext co-wound field center relative offsets and rotations	$10 \mathrm{um} / 100 \mathrm{urad}$
Corrector magnet field stability (x \& y)	0.1%
Luminosity (pairs measurement or x/y IP sigma measurements)	$\sim 1 \%$

Alignment and Tuning Strategy

- Switch off Sextupoles and Octupoles.
- Perform initial BBA using Quad movers and BPMs -> beam through to IP.
- Quadrupole BPM alignment.
- Perform Quadrupole BBA (DFS-like algorithm).
- Align Sextupole BPMs.
- Move FCMS to minimize FCMS BPM readings.
- Align tail-folding Octupole BPMs.
\square Activate and align sextupole and octupole magnets.
- Rotate whole BDS about first quadrupole to pass beam through nominal IP position or iteratively move FCMS and re-apply DFS BBA.
- Set reference orbit for 5 Hz feedback.
- Apply sextupole multiknobs to tune-out IP aberrations and maximise luminosity.
- $5-\mathrm{Hz}$ feedback system used throughout to maintain orbit whilst tuning. Errors are from finite BPM res. + lumi measurement, no GM or magnet jitter.

Quadrupole BPM Alignment

\square Nulling Quad-Shunting technique:

- To get BPM-Quad offsets, use downstream 10 Quad BPMs for each Quad being aligned (using ext. line BPMs for last few Quads).
■ Quad dK 100-80 \%, use change in downstream BPM readouts to get Quad offset.
- Move Quad and repeat until detect zero-crossing.
- For offset measurement, use weighted-fit to downstream BPM readings based on model transfer functions:

$$
x_{Q u a d}=\Delta x_{B P M} /\left(\Delta R_{Q}(1,1) * R(1,1)+\Delta R_{Q}(2,1) * R(1,2)\right)
$$

Alignment Results

- RMS BPM-Quadrupole field center alignments (100 seeds).

Sextupole/Octupole BPM Alignment

- Use x-, y-movers on magnets and fit 2nd, 3rd order polynomials to downstream BPM responses.
- Alignment is where 1st, 2nd derivative is 0 from fits.
$\square \quad 66^{\text {th }}$ Octupole can only be aligned by increasing its field strength by a factor of 10 , so is left with the initial alignment in the simulation.

Beam-Based Alignment of Quads

- Use movers on quadrupoles to steer beam through quad BPM centers assuming upstream alignment procedure has put beam through center of BPM in quad 1.
- Move quads 2 -> SQ3FF to center beam in BPMs 2 -> FCMS.
- Also move quad 1 to provide $\Delta \theta$

Beam-Based Alignment of Quads

- Simple 1-1 style solution constrains BPM readings well but causes large deviation from straight-line.
- Large dispersive growth of beamsize + possibly moves out of mover range.

Beam-Based Alignment of Quads

- Use mover minimisation and DFS constraints to limit the mover motion.
- Weights used in minimisation algorithm constrain how far movers move, this trades-off final mover positions against accuracy of BPM orbit.

-Results simulation.
- RMS Quad floor positions shown (100 seeds).

BBA Algorithm

- DFS + mover minimisation solution, use Matlab lscov to solve in a least-squares sense, $\mathrm{A}^{*} \mathrm{c}=\mathrm{b}$ with weight vector, ie. minimise: (b- A*c)'*diag(1/w^2)*(b-A*c), where:

$$
b=\left(\begin{array}{c}
B_{x}^{0} \\
B_{y}^{0} \\
B_{x}^{-} \\
B_{y}^{-} \\
B_{x}^{+} \\
B_{v}^{+}
\end{array}\right) \quad B=\left(\begin{array}{c}
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right) \quad A=\left(\begin{array}{c}
T^{0} \\
T^{-} \\
T^{+} \\
\operatorname{diag}(1)
\end{array}\right)
$$

$$
\begin{aligned}
& M_{i, j}^{X X}=R_{i}^{q}(2,1) \cdot R_{i, j}(1,2)+\left(R_{i}^{q}(1,1)-1\right) \cdot R_{i, j}(1,1)+R_{i}^{q}(3,1) \cdot R_{i, j}(1,3)+R_{i}^{q}(4,1) \cdot R_{i, j}(1,4) \\
& M_{i, j}^{X Y}=R_{i}^{q}(2,3) \cdot R_{i, j}(1,2)+R_{i}^{q}(1,3) \cdot R_{i, j}(1,1)+\left(R_{i}^{q}(3,3)-1\right) \cdot R_{i, j}(1,3)+R_{i}^{q}(4,3) \cdot R_{i, j}(1,4) \\
& M_{i, j}^{Y Y}=R_{i}^{q}(1,3) \cdot R_{i, j}(3,1)+R_{i}^{q}(2,3) \cdot R_{i, j}(3,2)+\left(R_{i}^{q}(3,3)-1\right) \cdot R_{i, j}(3,3)+R_{i}^{q}(4,3) \cdot R_{i, j}(3,4) \\
& M_{i, j}^{Y X}=\left(R_{i}^{q}(1,1)-1\right) \cdot R_{i, j}(3,1)+R_{i}^{q}(2,1) \cdot R_{i, j}(3,2)+R_{i}^{q}(3,1) \cdot R_{i, j}(3,3)+R_{i}^{q}(4,1) \cdot R_{i, j}(3,4)
\end{aligned}
$$

Beam Conditions Post-BBA

- IP beamsizes (100 seeds) after BPM alignment and BBA.
- Significant aberrations present at IP- coupling, dispersion, waist + higher order effects from non-linear optics.
- Use sextupole multi-knobs to tune these out and arrive at nominal ILC luminosity parameters.

Sextupole Multi-Knobs

\square Deliberately offsetting the beam orbit using the first 3 FFS sextupoles in an orthogonal way provides tuning knobs for dispersion and waist-shift at the IP through: $\Delta s_{x, y} \sim \Delta x . K_{2}^{s} L \beta_{x, y}^{s} \beta_{x, y}^{*} \cos (2 . \mu)$

$$
\Delta \eta_{x, y}^{*} \sim \Delta(x, y) \cdot K_{2}^{s} L \eta_{x, y}^{s} \sqrt{\beta_{x, y}^{s} \beta_{x, y}^{*}} \sin (\mu)
$$

\square Orthogonal knobs are computed by inverting the sextupole move -> IP aberration matrix formed by scanning the sextupoles in turn and measuring the IP terms.

- The dominant IP coupling term $<\mathrm{x}$ ' $\mathrm{y}>$ is tuned-out using SQ3FF.
\square The 4 skew quads in the BDS coupling correction system are iteratively scanned to remove any <xy>.

Higher-Order Sextupole Multi-Knobs

\square Due to sextupole tilt and strength errors, and due to non-linear fields as the beam passes off-center in the sextupoles, higher-order aberrations also exist at the IP.
\square These are corrected for by iterating through sextupoles 1-3 using the tilt dof. on the movers to maximise luminosity after the linear knobs have converged.

- If necessary, the strengths of the 5 sextupoles are also scanned.

Application of Multi-Knobs

ㅁ The linear sextupole knobs are applied until convergence, then the sextupole tilts and strengths are tuned.

Achieved Luminosity

- All the random seeds tuned to give greater than the required nominal luminosity.
- The median result gives a 15% luminosity overhead after tuning.
- This sets the performance requirements for the feedback systems used to maintain luminosity in the presence of ground motion and component vibrations.

Magnet Strength Error Comparison

- Comparison of results with relative absolute RMS errors on all magnets of $1 \mathrm{e}-3$ and $1 \mathrm{e}-4$.

Future Work

- Use 2-beam model.
\square Apply GM, component jitter + other error sources (magnetic drift, BPM drift etc.) to tuned beamline. Calculate mean time before re-tuning becomes necassary.
- Incorporate in larger-scale model with RTML+LINAC tuning results.

