

Overview

- Demonstrate can tune-up ILC BDS from expected post initial survey conditions to nominal luminosity.
- □ Try and "keep it real".
- □ Simulation models:
 - Magnet BPM alignment.
 - Beam-Based alignment using magnet movers.
 - Luminosity tuning using Sextupole multi-knobs.
 - 5-Hz trajectory feedback to maintain orbit in FFS Sextupoles.
 - Only 1 side of BDS modeled here.

Simulation Model

□ Use Matlab + Lucretia. (ILC2006c lattice)

Beam model:

- Single bunch tracking, 80,000 macro-particles.
- Single ray used where possible.
- Tuning performed on luminosity calculated by colliding bunch with itself with GUINEA-PIG.
- □ 5-Hz Feedback:
 - 5 x- and y- sextupole BPMs + 6 correctors.
 - ~50-pulse convergence gain.
 - Error sources from BPM + kicker resolutions (no GM).
- □ Initial beam:
 - Beam enters BDS on-axis with 10um/34nm horizontal/vertical normalised emittances (6nm vertical emittance-growth budget).

- □ Octupoles modeled as thin lenses within Sextupoles (actually co-wound).
- **FCMS** misaligned & relative misalignment of magnets within also.
- □ FCMS is aligned with the 2 BPMs shown using external movers on the whole assembly.
- □ In alternate scenario, this can be split in two (not modeled here), in which case SF1/QF1 and SD0/QD0 could be independently moved.

12-Jan-07

Error Parameters

Initial Quad, Sext, Oct x/y transverse alignment	200 um
Quad, Sext, Oct roll alignment	300 urad
Initial BPM-magnet field center alignment	30 um
dB/B for Quad, Sext, Octs (RMS)	1e-4
Mover resolution (x & y)	50 nm
BPM resolutions (Quads)	1 um
BPM resolutions (Sexts)	100 nm
Power supply resolution	14 - bit
FCMS: Assembly alignment	200 um / 300urad
FCMS: Relative internal magnet alignment	10um / 100 urad
FCMS: BPM-magnet initial alignment (i.e. BPM-FCMS Sext field centers)	30 um
FCMS: Oct – Sext co-wound field center relative offsets and rotations	10um / 100urad
Corrector magnet field stability (x & y)	0.1 %
Luminosity (pairs measurement or x/y IP sigma measurements)	~ 1 %

Alignment and Tuning Strategy

- □ Switch off Sextupoles and Octupoles.
- □ Perform initial BBA using Quad movers and BPMs -> beam through to IP.
- □ Quadrupole BPM alignment.
- □ Perform Quadrupole BBA (DFS-like algorithm).
- □ Align Sextupole BPMs.
- □ Move FCMS to minimize FCMS BPM readings.
- □ Align tail-folding Octupole BPMs.
- □ Activate and align sextupole and octupole magnets.
- □ Rotate whole BDS about first quadrupole to pass beam through nominal IP position or iteratively move FCMS and re-apply DFS BBA.
- □ Set reference orbit for 5 Hz feedback.
- □ Apply sextupole multiknobs to tune-out IP aberrations and maximise luminosity.
- □ 5-Hz feedback system used throughout to maintain orbit whilst tuning. Errors are from finite BPM res. + lumi measurement, no GM or magnet jitter.

Quadrupole BPM Alignment

- Nulling Quad-Shunting technique:
 - To get BPM-Quad offsets, use downstream 10
 Quad BPMs for each Quad being aligned (using ext. line BPMs for last few Quads).
 - Quad dK 100-80 %, use change in downstream
 BPM readouts to get Quad offset.
 - Move Quad and repeat until detect zero-crossing.
 - For offset measurement, use weighted-fit to downstream BPM readings based on model transfer functions:

 $x_{Quad} = \Delta x_{BPM} / \left(\Delta R_Q(1,1) * R(1,1) + \Delta R_Q(2,1) * R(1,2) \right)$

Alignment Results 10² Х 0.00 RMS Offset / um •• Q **10**¹ 10⁰ 20 40 60 80 100 0 Quad

□ RMS BPM-Quadrupole field center alignments (100 seeds).

12-Jan-07

- □ Use x-, y-movers on magnets and fit 2nd, 3rd order polynomials to downstream BPM responses.
- □ Alignment is where 1st, 2nd derivative is 0 from fits.
- □ 6th Octupole can only be aligned by increasing its field strength by a factor of 10, so is left with the initial alignment in the simulation.

Beam-Based Alignment of Quads

- □ Use movers on quadrupoles to steer beam through quad BPM centers assuming upstream alignment procedure has put beam through center of BPM in quad 1.
 - Move quads 2 -> SQ3FF to center beam in BPMs 2 -> FCMS.
 - Also move quad 1 to provide $\Delta \theta$

Beam-Based Alignment of Quads

- □ Simple 1-1 style solution constrains BPM readings well but causes large deviation from straight-line.
 - Large dispersive growth of beamsize + possibly moves out of mover range.

Beam-Based Alignment of Quads

- □ Use mover minimisation and DFS constraints to limit the mover motion.
- □ Weights used in minimisation algorithm constrain how far movers move, this trades-off final mover positions against accuracy of BPM orbit.

BBA Algorithm

DFS + mover minimisation solution, use Matlab lscov to solve in a least-squares sense, A*c=b with weight vector, ie. minimise: (b- A*c)'*diag(1/w^2)*(b - A*c), where:

<i>b</i> =	$ \begin{array}{c} B_{x}^{0} \\ B_{y}^{0} \\ B_{x}^{-} \\ B_{y}^{-} \\ B_{y}^{-} \\ B_{y}^{+} \\ B_{y}^{+} \\ C \end{array} $	$B = \begin{pmatrix} b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}$	$A = \left($	$\left(egin{array}{c} T^0 \ T^- \ T^+ \ diag(1) \end{array} ight)$
------------	---	---	--------------	--

$M_{i,j}^{XX} = R_i^q(2,1).R_{i,j}(1,2) + \left(R_i^q(1,1) - 1\right)R_{i,j}(1,1) + R_i^q(3,1).R_{i,j}(1,3) + R_i^q(4,1).R_{i,j}(1,4)\right)$
$M_{i,j}^{XY} = R_i^q(2,3) \cdot R_{i,j}(1,2) + R_i^q(1,3) \cdot R_{i,j}(1,1) + \left(R_i^q(3,3) - 1\right) \cdot R_{i,j}(1,3) + R_i^q(4,3) \cdot R_{i,j}(1,4)$
$M_{i,j}^{YY} = R_i^q (1,3) \cdot R_{i,j} (3,1) + R_i^q (2,3) \cdot R_{i,j} (3,2) + \left(R_i^q (3,3) - 1\right) \cdot R_{i,j} (3,3) + R_i^q (4,3) \cdot R_{i,j} (3,4)$
$M_{i,j}^{YX} = \left(R_i^q(1,1) - 1\right)R_{i,j}(3,1) + R_i^q(2,1)R_{i,j}(3,2) + R_i^q(3,1)R_{i,j}(3,3) + R_i^q(4,1)R_{i,j}(3,4)\right)$

														a^x
(-1	0	0	•••		$R_{1,2}(1,2)$	0	0	0	•••		$R_{1,2}(1,4)$		\boldsymbol{q}_2
ļ	$M_{2,3}^{XX}$	-1	0			$R_{1,3}(1,2)$	$M_{2,3}^{XY}$	0	0			$R_{1,3}(1,4)$		q_3^x
	$M_{2,4}^{XX}$	$M_{3,4}^{XX}$	-1			$R_{1,4}(1,2)$	$M_{2,4}^{XY}$	$M_{3,4}^{XY}$	0			$R_{1,4}(1,4)$		
ļ	:	:	·.	·	•.	•	:	:	•.	·.	·.	:		a ^x
	$M_{2,n}^{XX}$	$M_{3,n}^{XX}$	$M_{4,n}^{XX}$		$M_{n-1,n}^{XX}$	$R_{1,n}(1,2)$	$M_{2,n}^{XY}$	$M_{3,n}^{XY}$	$M_{4,n}^{XY}$		$M_{n-1,n}^{XY}$	$R_{1,n}(1,4)$		q_{n-1}
1 =	0	0	0			$R_{1,2}(3,2)$	-1	0	0			$R_{1,2}(3,4)$	c =	k_1^{x}
	$M_{2,3}^{YX}$	0	0			$R_{1,3}(3,2)$	$M_{2,3}^{YY}$	-1	0			$R_{1,3}(3,4)$	ι –	q_2^y
	$M_{2,4}^{YX}$	$M_{3,4}^{YX}$	0			$R_{1,4}(3,2)$	$M_{2,4}^{YY}$	$M_{3,4}^{YY}$	-1			$R_{1,4}(3,4)$		a^{y}
	÷	÷	·.	·.	·	÷	÷	÷	•.	·.	·.	:		<i>Y</i> ₃
	$M_{2,n}^{YX}$	$M_{3,n}^{YX}$	$M_{4,n}^{YX}$		$M_{n-1,n}^{YX}$	$R_{1,n}(3,2)$	$M_{2,n}^{YY}$	$M_{3,n}^{YY}$	$M_{4,n}^{YY}$		$M_{n-1,n}^{YY}$	$R_{1,n}(3,4)$:
														q_{n-1}^{y}
														- 11 1

Beam Conditions Post-BBA

- IP beamsizes (100 seeds) after BPM alignment and BBA.
- Significant aberrations present at IP- coupling, dispersion, waist + higher order effects from non-linear optics.
- Use sextupole multi-knobs to tune these out and arrive at nominal ILC luminosity parameters.

Sextupole Multi-Knobs

□ Deliberately offsetting the beam orbit using the first 3 FFS sextupoles in an orthogonal way provides tuning knobs for dispersion and waist-shift at the IP through: $\Delta s_{x,y} \sim \Delta x. K_2^s L \beta_{x,y}^s \beta_{x,y}^* \cos(2.\mu)$

$$\Delta \eta^*_{x,y} \sim \Delta(x, y) K_2^s L \eta^s_{x,y} \sqrt{\beta^s_{x,y} \beta^*_{x,y}} \sin(\mu)$$

- Orthogonal knobs are computed by inverting the sextupole move -> IP aberration matrix formed by scanning the sextupoles in turn and measuring the IP terms.
- □ The dominant IP coupling term <x'y> is tuned-out using SQ3FF.
- □ The 4 skew quads in the BDS coupling correction system are iteratively scanned to remove any <xy>.

Higher-Order Sextupole Multi-Knobs

- Due to sextupole tilt and strength errors, and due to non-linear fields as the beam passes off-center in the sextupoles, higher-order aberrations also exist at the IP.
- These are corrected for by iterating through sextupoles 1-3 using the tilt dof. on the movers to maximise luminosity after the linear knobs have converged.
- □ If necessary, the strengths of the 5 sextupoles are also scanned.

Application of Multi-Knobs

The linear sextupole knobs are applied until convergence, then the sextupole tilts and strengths are tuned.

12-Jan-07

Achieved Luminosity

- All the random seeds tuned to give greater than the required nominal luminosity.
- The median result gives a 15% luminosity overhead after tuning.
- This sets the performance requirements for the feedback systems used to maintain luminosity in the presence of ground motion and component vibrations.

Magnet Strength Error Comparison

□ Comparison of results with relative absolute RMS errors on all magnets of 1e-3 and 1e-4.

12-Jan-07

Future Work

- □ Use 2-beam model.
- Apply GM, component jitter + other error sources (magnetic drift, BPM drift etc.) to tuned beamline. Calculate mean time before re-tuning becomes necassary.
- Incorporate in larger-scale model with RTML+LINAC tuning results.