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Required vacuum

The need to avoid fast ion instability leads to very 
demanding specifications for the vacuum in the electron 
damping ring [Lanfa Wang, private communication]:  

< 0.5 nTorr CO in the arc cell, 
< 2    nTorr CO in the wiggler cell and 
< 0.1 nTorr CO in the straight section

In the positron damping ring  required vacuum level was not 
specified and assumed as 1 nTorr (common figure for 
storage rings)



8th January, 2007 European Linear Collider Workshop, DL, UK O.B. Malyshev

Sources of Gas in a Vacuum System 

Thermal stimulated desorption
The thermal desorption rate for stainless steel, well-known as a good 
vacuum material, can be reduced to the level of 10-12 Torr·l/(s·cm2) 
for CO after 24 hrs bake-out at 300ºC and weeks of pumping. 

Photon stimulated desorption 
Depends on many parameters as 

Choice of material and cleaning procedure
Bakeout temperature and duration
Photon/electron/ion intensity flux, energy and integral dose.
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Sources of Gas in a Vacuum System 

Thermal stimulated desorption
The thermal desorption rate for stainless steel, well-known as a good 
vacuum material, can be reduced to the level of 10-12 Torr·l/(s·cm2) 
for CO after 24 hrs bake-out at 300ºC and weeks of pumping. 

Photon stimulated desorption 
Depends on many parameters as 

Choice of material and cleaning procedure
Bakeout temperature and duration
Photon/electron/ion intensity flux, energy and integral dose.

Electron and ion stimulated desorption 
Depends on many parameters as 

Choice of material and cleaning procedure
Bakeout temperature and duration
Photon/electron/ion intensity flux, energy and integral dose.
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DR & Beam Parameters 
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Photon flux onto the 50-mm diameter vacuum chamber walls        
inside the dipoles and along the short straights 
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Photodesorption yield and flux along the damping ring straights made of   
stainless steel tubular vacuum chamber and baked in-situ at 300°C for 24 hrs.
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Photodesorption yield and flux along a stainless steel vacuum chamber with an 
ante-chamber in the damping ring straights baked in-situ at 300°C for 24 hrs.
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Tubular chamber vs a vacuum chamber with antechamber
Assumption: 

90% of photons are absorbed by SR absorbers and 
10% of photons are distributed along the beam vacuum chamber, a gas load analysis can be 
performed. 

Results: 
The distributed gas desorption due to 10% of photons is after 100 Ahr of beam conditioning the 
distributed photon stimulated desorption due to 10% of photons is the same for both designs: with 
and without antechamber. 
Meanwhile, in addition to photon stimulated desorption from the chamber there is thermal 
outgassing (10 times larger with an ante-chamber) and photon stimulated desorption from the 
lumped absorber. 
Therefore the total outgassing inside the vacuum chamber with an antechamber is larger. Hence, 
one can conclude that the thermal outgassing will be reduced much faster in a tubular vacuum 
chamber conditioned with photons than in a vacuum chamber with an ante-chamber.

Therefore, the ante-chamber design:
does indeed increase the vacuum conductance, 
but this does not help in reducing the outgassing. 
After 100 Ahr of beam conditioning the total outgassing along a tubular vacuum chamber is the 
same or lower than that along a vacuum chamber with an antechamber, and the SR absorbers 
make a gas load on the pumps even larger for an antechamber design. 
Since the antechamber design is more expensive, it worth to explore only if it is necessary to deal 
with other problems such as beam induced electron multipacting and electron cloud.
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TiZrV NEG coating for accelerator vacuum chambers 
A new vacuum technology for accelerators developed at CERN in recent years [i], is the use 
of TiZrV (NEG) coating for all inner surfaces of the vacuum chamber.
TiZrV films have been intensively studied by vacuum groups in many different laboratories 
[ii]. 
TiZrV coated vacuum chambers: 

are already used in accelerators:
for six years at the ESRF [iii] and 
for 4 years at ELETTRA [iv]; 

many others are just beginning (RHIC, Soleil, Diamond) or will use them in future.  

[i] C. Benvenuti. Non-Evaporable Getters : from Pumping Strips to Thin Film Coatings. EPAC '98 , Stockholm, Sweden , 22 - 26 
Jun 1998, pp. 200-204.

[ii] 45th IUVSTA Workshop on NEG coatings for particle accelerators and vacuum systems. 5-8 April 2006. Catania, Italy. 
www.iuvsta.org.

[iii] M. Hahn and R. Kersevan. Status of NEG coating at ESRF. Proc. of 2005 Particle Accelerator Conference, Knoxville, 
Tennessee, pp. 422-424.

[iv] F. Mazzolini, L. Rumiz, J. Miertusova, F. Pradal. Ten years of ELETTRA vacuum system experience. Vacuum 73 (2004) 225–
229.

[v] V.V. Anashin, I.R. Collins, R.V. Dostovalov, N.V. Fedorov, A.A. Krasnov, O.B. Malyshev and V.L. Ruzinov. Comparative study 
of photodesorption from TiZrV coated and uncoated stainless steel vacuum chambers. Vacuum 75 (2), July 2004, pp. 155-
159.
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TiZrV NEG coating for accelerator vacuum chambers 

A 1-micron NEG coating used on a vacuum chamber made of stainless 
steel, copper or aluminium : 

reduces the outgassing from the vacuum chamber walls (between 10 and 200 
times less than in-situ baked stainless steel) and 
introduces a distributed pumping speed, resulting in lower gas density in a 
beam vacuum chamber [v]. The only gases which are not pumped by such a 
coating are hydrocarbons and noble gases; these requires the use of other 
pumps, (for example, sputter ion pumps) but with much lower pumping speed. 
The use of NEG coating requires activation, i.e. 24 hours bakeout at 180°C.

In a positron DR the NEG coating also will play a role of an anti-
multipacting coating due to low SEY.
Thermal stimulated desorption from the NEG is negligible; the pressure 
inside the NEG coated chamber without SR is less than 10-13 Torr (Helmer 
gauge limit) 
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Pressure calculations

The average pressure can be calculated 
as a function of a distance between pumps L or 
as a function pumping speed S

For two cases without or with distributed pumping speed C
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Pressure along the arc: inside a stainless steel tube
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after 100 Ahr beam conditioning:         Seff = 200 l/s every 5 m
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Pressure along the arc: inside a NEG coated tube
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Pressure along the wiggler VC: inside a copper tube
after 100 Ahr beam conditioning:         Seff = 200 l/s every 3 m
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Pressure along the wiggler VC: inside a NEG coated tube
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after 100 Ahr beam conditioning:         Seff = 20 l/s every 30 m
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Pressure along the stainless steel Long Straight sections
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Pressure along the NEG coated Long Straight sections
after 100 Ahr beam 
conditioning 
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Electron multipacting effect on vacuum

The photon stimulated desorption is a two-step process:
Photoelectron emission (E1 =~5-10 eV and E2 =~ Eγ, PEY=~0.1 e-/ γ)

Electron stimulated molecular desorption

The electron stimulated desorption grow with electron energy and electron flux 
hitting the vacuum chamber.

For example, for Ee-= 100 eV and Γe-= 1016 e-/(m⋅s), the electron stimulated gas 
desorption is comparable to the photon stimulated desorption for Γγ= 1017 γ/(m⋅s) 
(~8 m downstream dipole). I.e. the electron multipacting may affect on vacuum, 
new results of e-cloud modelling are required for different parts of DR.

If the electron multipacting is significant on long straights, it will badly affect the 
vacuum performance as no vacuum conditioning will be done there with photons. 
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Main results of the modelling

NEG coating of vacuum chamber along both the arcs and the wigglers 
as well as a few tens meters downstream of both looks to be the only 
possible solution to fulfil vacuum requirement for the ILC dumping ring 
Beam induces electron Multipacting (BIEM) looks to make negligible  
impact inside dipoles and wigglers, but it might affect on the straights 
vacuum design and the beam conditioning scenario. E-cloud modelling 
results are needed!
Power dissipation from SR (and BIEM if there is any) have to be 
considered: 

vacuum chamber water cooling is required in wigglers, arcs and a few tenth 
meters downstream of both.
end power absorber for SR from the wiggler (at first dipole downstream a 
wiggler)

NEG coated power absorber for wiggler vacuum chamber needs to be
studied experimentally.
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Ideal vacuum chamber for ILC DR

Round or elliptical tube
Cheapest from technological point of view

No antechamber
Beam conditioning is most efficient

NEG coated
Requires less number of pumps with less pumping speed
180°C for NEG activation instead of 250-300°C bakeout
Choice of vacuum chamber material (stainless steel, copper and 
aluminium ) does not affect vacuum in this case
Residual gas CH4 and H2 (almost no CO and CO2)

There are experimental results that NEG coated elliptical 
vacuum chamber might be re-activated even without baking 
to 180°C, just by SR. 

Accurate experimental study is needed 


