Bunch Compressor for Main Linac Beam-Based Alignment

Andrea Latina (CERN)

European LC Workshop

January 8-11, 2007 - Daresbury Laboratory, UK

- Introduction
- Simulations Results
- Conclusions and Outlook

Introduction

ijk

- DFS attempts to correct dispersion and trajectory at the same time
- ⇒ A nominal beam + one or more *test beams* with different energies are used to determine the dispersion along the linac. The nominal trajectory is steered and the differences between the nominal and the off-energy trajectories are minimized:

• We want to use the Bunch Compressor to generate the energy difference.

Bunch Compression

• In order to compress a bunch longitudinally we need to impress a "rotation" in the longitudinal phase space

• this is achieved by two *pseudo*-rotations :

for which we need :

- 1. a RF system, working at a phase equal to $k\pi$, that linearly correlates the momentum with the *z*-position of the particles in the bunch
- 2. a magnetic chicane that provides a convenient R_{56} . The magnetic chicane consists of two pairs of rectangular dipoles, one being the mirror image of the other, separated by a drift space (see Frank Stulle's talk, CLIC Meeting, October 6, 2006)

Simulation Procedure

- Simulation Procedure
 - Tracking with PLACET
 - 1 nominal beam
 - 2 off-phase beams through the BC (phase offset introduced in the second stage of compression)
 - Main linac alignment:
 - 1. One-to-One Correction
 - 2. Dispersion Free Steering
 - [3. Dispersion Bumps Optimization]

Simulation Parameters

- Bunch Compressor and Main Linac:
 - ML:
 - 24 cavity spacing lattice (1 quadrupole every 3 cryogenic modules)
 - laser-straight/curved configurations
 - BC: two stages compression, configuration 300B:
 - σ_z reduced from 6 mm $\rightarrow 300~\mu{\rm m}$
 - energy increased from 5 GeV \rightarrow 15 GeV

- Misalignment model in the ML:
 - $\sigma_{quad}~=~300\,\mu{\rm m}$ Quadrupole position error
 - $\sigma_{cav}=300\,\mu{\rm m}$ Cavity position error
 - $\sigma_{cav}^\prime = 300\,\mu\mathrm{rad}$ Cavity angle error
 - $\sigma_{BPM} = 200 \,\mu\mathrm{m}$ BPM position error
 - $\sigma_{res} = 1 10\,\mu\mathrm{m}$ BPM resolution

- Dispersion Free Steering:
 - 1 nominal beam, 2 help beams
 - $\omega_{1,i} = 1$, orbit correction
 - $\omega_{2,k} = 1000 10000$
 - $\sigma_{res} = 1 10\,\mu{\rm m}$ BPM resolution

Bunch Compression of an off-phase bunch

Energy difference as a function of the phase:

- with respect to the nominal beam, off-phase beams have:
 - different energy spread
 - greater bunch length
 - phase out of sync
- their phase must be synchronized with the ML accelerating phase

Final Emittance Growth after Dispersion Free Steering as a function of $\boldsymbol{\Phi}$

- two cases are shown: $\omega_1 = 1000$ and $\omega_1 = 10000$ (second gives better results)

- each point is the average of 100 machines

 \Rightarrow there is an optimum (which seems to vary with the weight)

- from now on we focus on $\Phi{=}25^o$

Emittance growth along the machine after DFS

Individual contributions

 σ_{BPM} =1 μ m, Φ =25°, ω =10000, average of 100 machines

Emittance Growth as a function of the Weight, for $\Phi=25$

for a laser-straight linac, DFS (with ω "big", BPM resolution of 1 μm) leads to excellent results but...

.. for a Curved Machine things are different!

In a curved linac, the BPM scale error, $X_{meas} = a X_{real}$, has an impact on the DFS performances

- Scale error prevents from using "big" weights

 \Rightarrow we still need to use Dispersion Bumps to reduce the emittance growth!

Conclusion and future developments

- BC for generating the beam energy difference needed by DFS seems to be working
- in case of a straight linac the performances are remarkable ($\Delta \epsilon < 2$ nm)
- \bullet in case of a curved linac the scale error imposes some limits \rightarrow dispersion bumps are necessary

- Studies in progress:
 - how to align the bunch compressor? we want to use $\mathsf{BC1}$ to align $\mathsf{BC2}$
 - does the bigger energy spread in the BC2 constitute a problem (apertures...) ?

Addendum: Using BC1 to align BC2 (preliminary)

• ILC Bunch Compressor :

two stages, RFs **do** accelerate the bunch, σ_z from 6mm to 300 μ m

- We want to use the BC1 in order to align the BC2
 - we generate the test-beams with BC1, then apply DFS to BC2
 - the accelerating phase is 110° for the BC1 and 22° BC2

Emittance Growth in BC2 after Dispersion Free Steering

Using a phase offset of 10 degrees:

 \Rightarrow Dispersion Free Steering is effective but we need to apply Dispersion Bumps