Beam-energy spectrometer

D. Ward, M. Thomson, M. Slater (Cambridge)
S. Boogert, G. Boorman (RHUL)
F. Gournaris, A. Liapine, B. Maiheu, D. Miller, M. Wing (UCL)
and International Collaborators

- Introduction and motivation
- Work on nanoBPM at KEK
- Energy spectrometer in ESA at SLAC
- Spectrometer BPM prototype
- Chicane simulation
- Outlook

European ILC Workshop

Daresbury, 8-9 January 2007

Introduction and motivation

Uncertainty on beam energy measurement contributes directly to the uncertainty on the ILC physics output.

Need for:

•Energy measurement accuracy 10⁻⁴

- •Stability and ease of operation
- •Minimal impact on data taking

BPM Spectrometry

Study and design magnetic chicane for beam energy measurement using BPMs

 NanoBPM @ ATF (KEK): test resolution, try different analysis methods, BPM stability tests, multi-bunch operation, inclination of beam in BPMs, etc.

o Spectrometer aspects of BPMs can be tested

- T474/491 @ ESA (SLAC): test stability and operational issues with a full implementation of 4 magnet chicane and 3 BPM stations.
 - o Test of real chicane prototype

nanoBPM at ATF

ATF results: resolution and inclination Resolution: 0.1 <u>R</u>esidual /μm 0.09 Precise calibration using movers 0.08 and cross-calibration using 0.07 0.06 corrector magnets RMS 0.05 0.04 Best resolution ~ 15 nm 0.03 0.02 0.01 on Scale Scale Scale -1.6 0 2 Δ 6 8 -1.8 BPM Beam inclination: -2.2 Important for 3 or 4 magnet chicane -2.4 -2.6 No significant change in resolution but clear change in calibration constants -2.8 -1000-500 500 1000 0 Angle offset /urad Further investigation

ATF results: multi-bunch studies

Cavity BPMs must work with ILC bunch train - can we measure the energy of individual bunches?

ATF has a bunch train of 3 bunches (150 ns)

Simulation:

T474/T491 at ESA

- January 2006 test run (4 days): commissioning BPMs 31,32 and 1,2 upstream
- April 2006 run (2 weeks):

o Commissioning new ILC prototype linac BPMs (3,4,5) where 4 is on a (x,y) mover system

o Commissioning old SLAC BPMs (9,10,11)

- o Digitisation/signal processing optimisation
- July 2006 run (2 weeks):
 - o Commisioning Zygo interferometer system (3,4,5) + BPM24 upstream
 - o Further optimisation of hardware
 - o Stability data taking with 10 BPMs, frequent calibrations

ESA BPM set-up

Old SLAC rectangular cavities '

- 2.856 Ghz, high Q ~ 3000
- 20 mm aperture

Adolphsen and Li cold LINAC prototype cavities

- 2.859 GHz, low Q ~ 500
- 36 mm aperture

Properties under investigation, improving calibration routine

ESA results: resolution and stability

ESA results, resolution drift

Resolution of BPM 11-10 in groups of 500 events

- 11 hour period
- Gradual degradation when using same calibration constants
- Cause of drift: frequency drift, electronic gain fluctuation, ...?

Planned electronics gain monitoring system will aid understanding

ESA results: calibration stability

Stability of position and IQ phases: phase varies by ~0.6% and scale by ~2%

Systematic effects under investigation: gain drifts, frequency drifts, ... 11

Linking stations over whole trajectory

How well do we know the entire orbit in the end station?

Spectrometer simulation

- Developed a simulation in Geant 4 for the spectrometer chicane
 - o Load field maps (parabolic interpolation) as well as uniform fields
 - o XML input file to setup layout (dipoles and BPMs), e.g. 3 or 4 magnet chicane, beam parameters, etc..
 - o Writes out root file with positions in the defined BPMs.
- Status
 - o Main part finished, accuracy check in progress
 - o Add some Geant 4 physics processes

Spectrometer-specific BPM

Existing BPM designs are not optimal for an energy spectrometer

- aperture (machine protection)
- resolution, stability
- monopole rejection
- coupling \oslash decay time

Take know-how gained from collaboration work and design a BPM suitable for an energy spectrometer.

- Al model and Cu vacuum prototype
- 30 mm aperture, 2.878 GHz
- theoretical resolution ~ 11.2 nm

Aluminium model

Hardware

Mover system

- Horizontal stage: 2" travel range,
 15 μm
- Vertical stage: 5 mm travel range, 10 μm accuracy

Electronics box almost complete

Hardware

SONY

Mover system

- Horizontal stage: 2" travel range,
- 15 µm
- Vertical stage: 5
 10 μm accuracy

st complete

Summary and Outlook

- Work at KEK providing vital information on BPM performance and issues relevant to spectrometer.
- Development of BPM specific to Spectrometer needs in progress
- Further stability, multi-bunch and tilt studies to be performed at KEK
- For 2007 at ESA
 - Install magnets to form chicane
 - Install and commission Spectrometer-specific BPM prototype with mover and electronics.
 - Link BPM stations with interferometer
 - Assess issues with running a Spectrometer system
- Further development of simulation and impact on physics.