

Target Design and Photon Collimator Overview

Ian Bailey

University of Liverpool / Cockcroft Institute

EUROTeV: WP4 (polarised positron source) PTCD task

I. Bailey, J. Dainton, L. Zang (Cockcroft Institute / University of Liverpool) D. Clarke, K. Davies, N. Krumpa, J. Strachan (CCLRC Daresbury Laboratory) C. Densham, M. Woodward, B. Smith, (CCLRC Rutherford Appleton Laboratory) J.L. Fernandez-Hernando, D.J. Scott (CCLRC ASTeC Daresbury Laboratory / Cockcroft Institute)

P. Cooke, P. Sutcliffe (University of Liverpool)

In collaboration with

Jeff Gronberg, David Mayhall, Tom Piggott, Werner Stein (LLNL) Vinod Bharadwaj, John Sheppard (SLAC)

Target Systems PTCD is the **Capture Optics** EUROTeV-funded task to carry out Positron beam pipe/ design studies of NC rf cavity the conversion target and photon Target wheel collimator for the **Photon** polarised positron **Motor** beam pipe Vacuum feedthrough

source.

LNL - draft design

- Working in collaboration with SLAC and LLNL.
- Developing water-cooled rotating wheel design.
- •0.4 radiation length titanium alloy rim.
- Radius approximately 0.5 m.
- Rotates at approximately 2000 rpm.

Target Station - Remote Handling

Vertical remote-handling design to mimimise footprint of target hall and therefore minimise civil engineering costs.

Change over times dominated by cooling / heating of OMD magnets?

Target Wheel Design

Iterative design evolution between LLNL and DL

Constraints:

- Wheel rim speed fixed by thermal load (~30kW) and cooling rate
- •Wheel diameter (~1m) fixed by radiation damage and capture optics
- •Materials fixed by thermal and mechanical properties and pair-production crosssection (Ti6%Al4%V)
- •Wheel geometry (~30mm radial width) constrained by eddy currents.

DL Prototype Target Wheel (2)

•Detail showing drive shaft and wheel hub.

•Option of cantilevered or pass-through drive shaft.

•Reducing drive shaft to 2" diameter allows use of standard feedthrough and water coupling.

Eddy Current Simulations

Initial "Maxwell 3D" simulations by W. Stein and D. Mayhall at LLNL indicated:

•~2MW eddy current power loss for 1m radius solid Ti disc in 6T field of AMD.

<20kW power loss for current1m radius Ti rim design.

•However - LLNL simulations do not yet agree with SLAC rotating disc experiment.

> •8" diameter Cu disc rotating in field of permanent magnet.

•OPERA-3D simulations are starting at RAL + FEMLAB at ANL.

Photon Beam Polarisation

FLUKA Photon Collimator Simulations (1)

Assume a 300kW 10 MeV photon beam with Gaussian transverse beam profile (1mm rms):

Power deposited in spoiler: ~2.5 kW

Power deposited in absorber: ~3 kW

(1.8% of total beam power)

Starting collimator geometry: Inner radius of spoiler 1.2mm Thickness of spoiler 2.3mm Inner radius of absorber 53.5mm Thickness of absorber 160mm Collimator length 1500mm

Lei Zang, University of Liverpool

Future PTCD Activities

Target Prototyping

- Proposing 3 staged prototypes over 3 years (LC-ABD funding bid)
- Measure eddy current effects
 - top priority
 - major impact on design
- Test reliability of drive mechanism and vacuum seals.
- Test reliability of water-cooling system for required thermal load
- Develop engineering techniques for manufacture of water-cooling channels.
- Develop techniques for balancing wheel.
- First prototype mechanical deisgn progressing well.
- First prototype instrumentation and electronics design starting.

Remote-handling design

- Essential that remote-handling design evolves in parallel with target design.
- Determines target hall layout and cost.
- Evaluaitng change-over times.

Photon Collimator design

- Use realistic photon beam.
- Activation simulations (in collaboration with DESY).
- Thermal studies and cooling design.
- Variable aperture (optimise in association with beam jitter simulations)?