

ILC Head-On Interaction Region: Progress Report

Olivier NAPOLY For the Head-on Task Group

European LC Workshop 8 January 2007

Head-on Task Group

- GOAL : Work on the ILC Head-on Scheme to make it more attractive from the **Collider Performance** and **BDS Cost** viewpoints.
- Head-on Task Group \approx Attendance of the Small IR Mini-Workshop at Orsay-Saclay on 19-20 October 2006

http://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=1150 1st day http://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=1149 2nd day

1	ALABAU PONS Maria del Carmen	IN2P3/LAL	13	KIRCHER François	CEA/DAPNIA
2	ANGAL-KALININ Deepa	CCLRC	14	IWASHITA Yoshihisa	Kyoto University
3	APPLEBY Robert	Univ.	15	JACKSON Frank	CCLRC
		Manchester	16	KELLER Lewis	SLAC
4	BAMBADE Philip	IN2P3/LAL	17	KURODA Shigeru	KEK
5	BORBURGH Johannes	CERN	18	NAPOLY Olivier	CEA/DAPNIA
6	BROSSARD Julien	CNRS	19	PAYET Jacques	CEA/DAPNIA
7	DADOUN Olivier	IN2P3/LAL	20	RIMBALII T Cécile	IN2P3/I AI
8	DELFERRIERE Olivier	CEA/DAPNIA	20		
0	DE MENEZES Donio		21		CEA/DAPNIA
9	DE MENEZES Denis	CEA/DAPINIA	22	SABBI Gian Luca	LBL
10	DEVRED Arnaud	CEA/DAPNIA	23	TOPREK Dragan	Univ
11	DURANTE Maria	CEA/DAPNIA			Manchester
12	FELICE Helène	CEA/DAPNIA	24	URIOT Didier	CEA/DAPNIA

Outline

- Motivation for Head-on Collisions
- Final Focus System
- Final Doublet
- Extraction Scheme
- Electrostatic Separator
- Collimation and Beam losses
- Conclusions

Motivation for Head-on Collisions

For the collider operation :

- **Head-on** makes focusing and colliding easier, while extraction is more difficult
- **Crossing angle** makes extraction easier, while colliding and focusing is more difficult

Pros: Four machine devices are not needed upstream of the IP

- 1. Crab RF-cavities
- 2. Anti-DID (Detector Integrated Dipoles)
- 3. Anti-solenoids around each QD0
- 4. Dipole correctors on top of each QD0
- **Cons** : Beam extraction requires bending the spent beams after the IP and before the first parasitic crossing ~ $(c\tau_b/2)$
 - \Rightarrow dispersion of the low energy tails
 - \Rightarrow challenging beam usage and transport to the dump.

Final Focus System

Final Focus and Chromatic Correction functions are combined

Final Focus System

Automatic CCS matching based on Luminosity optimisation

Final Doublet for 500 GeV cm Energy

Final Doublet for 500 GeV cm Energy

Final Doublet : (Solenoid + Quad) 3D Map

OPERA 3D modelling of QDO imbedded in LDC 4T Solenoid

Final Doublet : (Solenoid + Quad) 3D Map

Preliminary analysis: Vector Fields

- Solenoid Br component is negligible
- Solenoid Bz < 2 T @ QD0 \Rightarrow Bmax = 7.65 T \oplus 2 T in quadrature \Rightarrow Bmax \approx 8 T on QD0

⇒ Standard NbTi doublet seems feasible for 500 GeV cm energy

Final Doublet : 500 GeV cm energy

Final Doublet : 1 TeV upgrade

NED Nb3Sn conductors achieve Jc > 1500 A/mm²

Alstom/NED (workability program milestone) 1.25 mm ; 78x85 µm sub-element 740 A (~1500 A/mm²) @4.2 K & 12T (measured at CERN & INFN-Mi)

SMI/NED (step II iteration) 1.26 mm ; 288 x 50 μm tube 1400 A (~2500 A/mm²) @4.2 K & 12T (measured at TEU & INFN-Mi)

European LC Workshop, Daresbury, UK

Final Doublet : 1 TeV upgrade

NED Nb3Sn conductor seems to allow safely a 50 % increase of the gradient

Final Doublet : 1 TeV upgrade

	QD0	QF1	SD0	SF1
Length [m]	1.374	0.746	0.7	0.4
Gradient	373 T/m	370 T/m	5243 T/m2	4873 T/m2
Field @ bore	10.5 T	10.5 T	4.11 T	3.82 T

Beam Extraction Scheme

Plan View of Zero Degree Extraction Showing Beamstrahlung Collimation

Extraction Scheme : Parasitic Crossing

First stage separation is provided by seven 4 m long Electrostatic Separator modules with Es = 30 kV/cm

+ 100 Gauss compensating dipoles

Beam-beam instability from parasitic crossings is under control when :

- Horizontal transverse separation is larger than 11 mm
- R_{34} (IP \rightarrow 1st PIP) < $\beta^{*1/2}$ x 100 m^{1/2} (cf. J. Brossard's talk)

Electrostatic Separators Experience

From Jan Borburgh	LESB II (1979) [1]	Tristan (1989) [2]	Tevatron (1992) [3]	SPS ZX (1982) [4]	LEP ZL (1996)	CESR (1999) [5]	BEPC II (2001) [6]
Nominal gap (mm)	150	80	50	40 (20 – 160)	100 (60 – 160)	85	100
Operational field strength (MV/m)	< 5.2	3.0	5.0 max.	5.0	2.5 (tested to 5.0)	2.0	2.2
HV supply (kV)	+/-390	+/- 120	+/- 125	0/-200	+/- 150	+/- 85	+/- 110
Electrode dimension (mm x mm)	n.a.	4600 x 150		3000 x 160	4000 x 260	2700	
Electrode material	Glass	Ti		Ti	SS		
Device length (mm)	n.a.	5105	3000	3380	4500		
Working pressure (mbar)	10 ⁻⁶			10 ⁻¹⁰	10 ⁻¹⁰		
Operational spark rate (#/h)	<1	<0.02		< 0.03	0.2	0.04	
Particle beam	p-	e- e+ 9mA 15GeV	р р-	р р- (270 GeV)	e- e+ (100 GeV)	e- e+ 150 mA	e- 576 mA

Electrostatic Separators Experience

Electrostatic Separators Modelling

• Field homogeneity is being calculated at CERN (B. Balhan)

 Beam transport through inhomogeneous ES field is being modelled at Saclal

Electrostatic Separators

Remaining Questions :

- Sparking rate vs. Beam loss intensity
 → no record from LEP
 - \rightarrow beam test at ESA (or KEK, ...)
- Field quality in case of slit electrodes

- 1 TeV upgrade requires 50 60 kV/cm
 → Titanium electrodes
- Separator failure handling

Extraction Scheme : No compensating dipole

This scheme is not fully checked : beamstrahlung collimation seems a problem because of the small transerse separation w.r.t. the spent beam *(L. Keller)*

Collimation and Beam Losses

Collimation depths are limited by BeamCal

- Extraction optics is currently been studied with the primary goals to **minimize the spent beam losses** and **reduce the tunnel length**.
- Spent beam intermediate collimation is proposed.

Prospects

• Head-on IR has the potential to be a Luminosity and Cost effective option for 500 GeV and 1 TeV ILC

• Head-on IR has the potential to make full profit from the high-field superconducting magnet technological developments driven by SLHC

• I am optimistic that a **spent beam extraction system** can be found with tolerable beam and beamstrahlung losses.

- Post-IP instrumentation will be challenging
- Beam test of an existing LEP ZL **separator module** is necessary. I hope GDE R&D Board could help.

Parameter Space for E=250 GeV L=2 10³⁴ cm⁻²s⁻¹

		Nominal	Large Y	Low P	High L	TESLA	Med Q P
N	x 10 ¹⁰	2	2	2	2	2	1.3
n _b		2820	2820	1330	2820	2820	2820
$\epsilon_{x,y}$	μm,nm	9.6, 40	12, 80	10, 35	10, 30	10, 30	9.6, 30
$\beta_{x,y}$	cm,mm	2, 0.4	1, 0.4	1, 0.2	1, 0.2	1.5, 0.4	1, 0.2
$\sigma_{x,y}$	nm	626.5, 5.7	495.3, 8.1	452.1, 3.8	452.1, 3.5	553.7, 5	443, 3.5
σ _z	μm	300	500	200	150	300	200
Bunch space	ns	308.5	308.5	462.4	308.5	308.5	308.5
Dy		19.12	28.30	26.72	21.66	24.98	19.16
δ_{BS}	%	2.2	2.2	5.1	6.2	2.7	2.5
Р	MW	11.3	11.3	5.3	11.3	11.3	7.3