dapnia

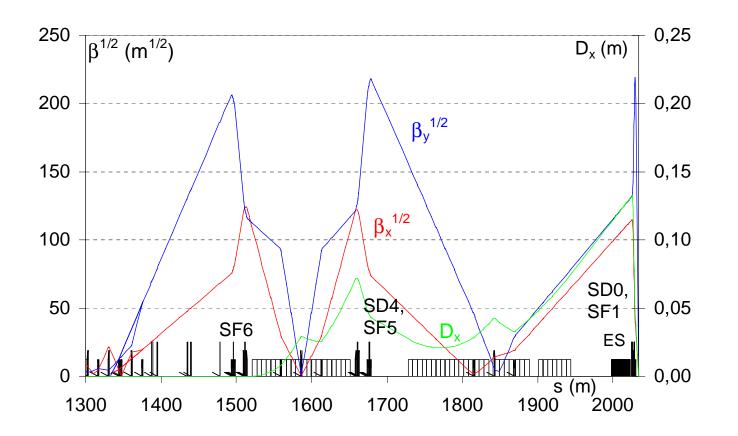
saclay

Automatic Optimization of Final Focus Systems with Local Chromaticity Correction

Jacques PAYET CEA/DAPNIA/SACM

European LC Workshop 2007 January 8th-9th

08/01/2007 CEA DSM DAPNIA SACM J. PAYET



Outline

- Final Focus System
- Final Focus Optimization
 - Final Focus Matching
 - Luminosity Optimization
- Conclusions

Final Focus System

• Combine the Final Focalization and the Chromatic Correction functions

saclay

- A recipe for the FFS matching was presented by A. Servi and al. [1], and we adapted it to the luminosity optimization procedure.
- The Final Focus Matching is performed by 6 stages :
 - From the IP to the FFS entry

Final Focus Matching

- Tuning of the Twiss functions, α_x , α_y , at the FD entrance
- Tuning of the phase advances between paired sextupoles and double waist at QF7 adjustment
- Virtual waist near the FFS entry fitting
- Dispersion and BDS deviation matching
- Twiss functions matching at FFS entrance
- From the BDS entrance to the IP
 - 2nd order terms minimization with the sextupoles
- All these steps are automatically launched
- At the end, we get a first FFS tuning and we have to perform the Luminosity Optimization.

[1] A. Seryi, M. Woodley, P. Raimondi, A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN, PAC 2003

08/01/2007

CEA DSM DAPNIA SACM J. PAYET

Luminosity Optimization

 Once the 1st order matching and the 2nd order minimization was realized one have to perform the Luminosity Optimization

- This is done by varying the quadrupoles, in order to adjust the sextupole phase advances, and by varying the sextupole strengths
- As shown by R. Thomas [2], one can use an optimization algorithm that takes as figure of merit the rms beam sizes at the end of the beam line to increase the luminosity
- We adopt this strategy and we use two tools for the luminosity optimization:
 - The LUMOPT code (S. Auclair) which calculates analytically the rms beam sizes expressed as function of the transfer matrix high order terms
 - The TRACEWIN code (D. Uriot) which tracks a particle cloud

[2] R. Tomas, NON-LINEAR OPTIMIZATION OF BEAM LINES, CERN-AB Division CLIC Note 659

Luminosity Optimization : analytic

- We want to minimize the rms beam size product at IP : $(x_1 \overline{x_1})^2 \overline{(x_3 \overline{x_3})^2}$
- We express the particle coordinates as function of the initial coordinates and the high order transfer matrix terms :

$$x_{i} = \sum_{j} R_{ij} x_{j}^{(0)} + \sum_{jk} T_{ijk} x_{j}^{(0)} x_{k}^{(0)} + \sum_{jkl} U_{ijkl} x_{j}^{(0)} x_{k}^{(0)} x_{l}^{(0)} + \sum_{jklm} V_{ijklm} x_{j}^{(0)} x_{k}^{(0)} x_{l}^{(0)} x_{m}^{(0)} + \dots$$

- For the initial beam, we assume that :
 - All the odd moments are null : $\overline{x_j^{(0)}} = 0, \overline{x_j^{(0)}x_k^{(0)}x_l^{(0)}} = 0, ...$
 - $\text{ We can express the high even moments with the 2nd order moments :} \\ \overline{x_{j}^{(0)}x_{k}^{(0)}x_{j'}^{(0)}x_{k'}^{(0)}} = \overline{x_{j}^{(0)}x_{k}^{(0)}} \overline{x_{j'}^{(0)}x_{k'}^{(0)}} + \overline{x_{j}^{(0)}x_{j'}^{(0)}} \overline{x_{k'}^{(0)}x_{k'}^{(0)}} + \overline{x_{j}^{(0)}x_{k'}^{(0)}} \overline{x_{k'}^{(0)}x_{k'}^{(0)}} \overline{x_{k'}^{(0)}x_{j'}^{(0)}}$
- With these assumptions we write the mean values as :

$$\overline{x_i} = \sum_{jk} T_{ijk} \overline{x_j^{(0)} x_k^{(0)}} + \sum_{jklm} V_{ijklm} \overline{x_j^{(0)} x_k^{(0)} x_l^{(0)} x_m^{(0)}} + .$$

• And then we write the rms beam size as :

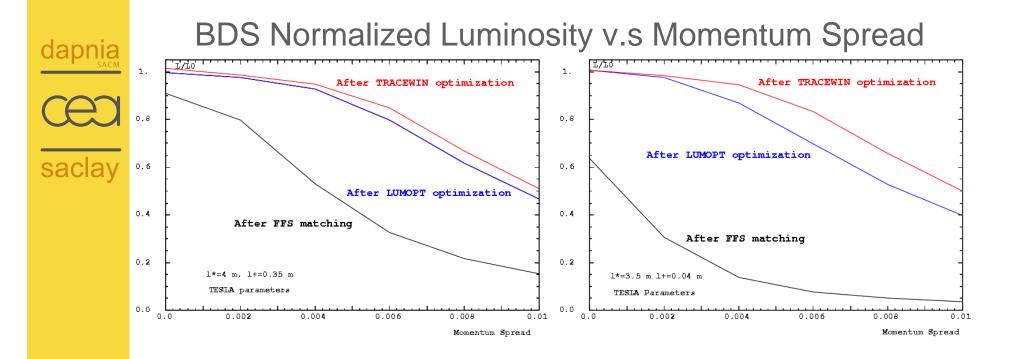
$$\begin{pmatrix} x_{i} - \overline{x_{i}} \end{pmatrix}^{2} = \sum_{jj'} R_{ij} R_{ij'} \overline{x_{j}^{(0)} x_{j'}^{(0)}} + \sum_{jkj'k'} T_{ijk} T_{ij'k'} (\overline{x_{j}^{(0)} x_{k}^{(0)} x_{j'}^{(0)} x_{k'}^{(0)}} - \overline{x_{j}^{(0)} x_{k}^{(0)}} \overline{x_{j'}^{(0)} x_{k'}^{(0)}}) \\ + 2 \sum_{jklj'} U_{ijkl} R_{ij'} \overline{x_{j}^{(0)} x_{k}^{(0)} x_{l}^{(0)} x_{j'}^{(0)}} + \sum_{jklj'k'l'} U_{ijkl} U_{ij'k'l'} \overline{x_{j}^{(0)} x_{k}^{(0)} x_{l}^{(0)} x_{k'}^{(0)} x_{k'}^{(0)} x_{l'}^{(0)} } \\ + 2 \sum_{jklmj'k'} V_{ijklm} T_{ij'k'} (\overline{x_{j'}^{(0)} x_{k'}^{(0)} x_{j}^{(0)} x_{k'}^{(0)} x_{k'}^{(0)} x_{k'}^{(0)} x_{k'}^{(0)} x_{k'}^{(0)} - \overline{x_{j'}^{(0)} x_{k'}^{(0)} \overline{x_{j'}^{(0)} x_{k'}^{(0)} x_{m'}^{(0)} } + \dots \\ DAPNIA SACM J. PAYET European LC Workshop January 8-9th$$

08/01/2007

CEA DSM

daphia

saclay


Luminosity Optimization (2)

- To perform a quick luminosity optimization we have developed the code LUMOPT (S. Auclair) :
 - the variables are the FFS magnetic elements
 - minimize the beam sizes (applying the previous formulae)
 - to obtain the high order matrix terms it launch :
 - TRANSPORT (SLAC) which gives the matrix terms up to 3rd order
 - or MADX with PTC extension (CERN), up to 7th order and more
 - or maximize the luminosity (particle cloud analysis)
 - to transport the particle cloud it launch DIMAD
 - and use LUMTRAK (Saclay) to compute the luminosity
 - different minimization algorithms are available ("classic", simplex, least square)
- A final optimization (if needed) is performed with TRACEWIN code (D. Uriot)
 - transport a particle cloud through the beam line and maximize the luminosity at IP by varying the magnetic elements.

daphia

saclay

Luminosity Optimization (3) : Luminosity result

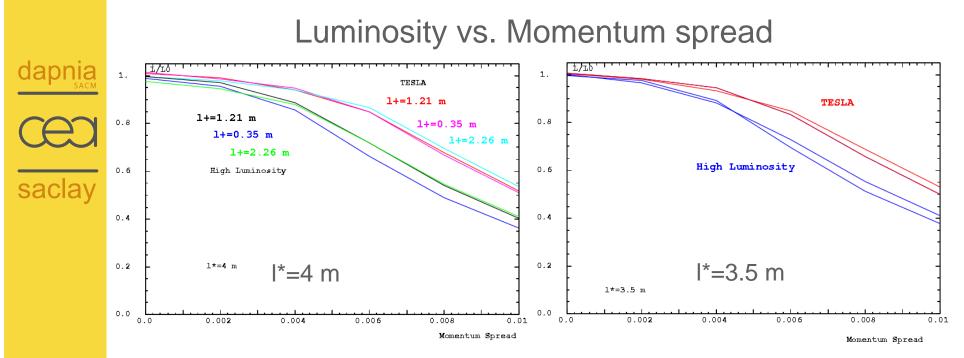
• LUMOPT with TRANSPORT and a classic minimization algorithm gives quickly (15mn) a good starting point, and some time it is sufficient.

•The TRACEWIN optimization time is decreased (~3 h compare to 1 night)

 \Rightarrow To perform a full optimization we need about 1/2 -1 day

Conclusions

dapnia


saclay

- The BDS optimization are now automatic for a large part
- The time needed to optimize a line is strongly reduced
- The obtained luminosity curves are quite flat in the useful area

Parameter Space for E=250 GeV L=2 10³⁴ cm⁻²s⁻¹

dapnia Saclay			Nominal	Large Y	Low P	High L	TESLA	Med Q P
	N	x 10 ¹⁰	2	2	2	2	2	1.3
	n _b		2820	2820	1330	2820	2820	2820
	ε _{x,y}	μm,nm	9.6, 40	12, 80	10, 35	10, 30	10, 30	9.6, 30
	$\beta_{x,y}$	cm,mm	2, 0.4	1, 0.4	1, 0.2	1, 0.2	1.5, 0.4	1, 0.2
	$\sigma_{x,y}$	nm	626.5, 5.7	495.3, 8.1	452.1, 3.8	452.1, 3.5	553.7, 5	443, 3.5
	σ _z	μm	300	500	200	150	300	200
	Bunch space	ns	308.5	308.5	462.4	308.5	308.5	308.5
	Dy		19.12	28.30	26.72	21.66	24.98	19.16
	δ_{BS}	%	2.2	2.2	5.1	6.2	2.7	2.5
	Ρ	MW	11.3	11.3	5.3	11.3	11.3	7.3

BDS : Luminosity

•Full optimization for the TESLA case.

•Matching with QM15-QM11 and luminosity optimization for High Lum. case.

- •The "best" luminosity curves are obtained for the largest free drift.
- •The luminosity curves are very similar for $I^*=4$ m and $I^*=3.5$ m.